2,416 research outputs found
Some Observations on the Embryology of Chronomus
All the eggs used in the following investigation were collected from a small pond in the eastern edge of the city of Indianola. The eggs were gathered from time to time at intervals of from one to three days, between June 20th and September 30th, 1902. They were found in abundance along the bank, in water from one to six inches deep. Usually they were attached to a piece of wood, or some plant growing in the edge of the water. Many were also found attached to the bottom. A few were found floating in the water, but as by far the greater number were attached, it is probable that those found floating had broken from their attachment, or by some accident had not been fastened
A New Class of Non-Linear Stability Preserving Operators
We extend Br\"and\'en's recent proof of a conjecture of Stanley and describe
a new class of non-linear operators that preserve weak Hurwitz stability and
the Laguerre-P\'olya class.Comment: Fixed typos, spelling, and updated links in reference
Salt Bridges and Gating in the COOH-terminal Region of HCN2 and CNGA1 Channels
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore. Recently, the structure of the HCN2 COOH-terminal region was solved and shown to contain intersubunit interactions between C-linker regions. To explore the role of these intersubunit interactions in intact channels, we studied two salt bridges in the C-linker region: an intersubunit interaction between C-linkers of neighboring subunits, and an intrasubunit interaction between the C-linker and its CNBD. We show that breaking these salt bridges in both HCN2 and CNGA1 channels through mutation causes an increase in the favorability of channel opening. The wild-type behavior of both HCN2 and CNGA1 channels is rescued by switching the position of the positive and negative residues, thus restoring the salt bridges. These results suggest that the salt bridges seen in the HCN2 COOH-terminal crystal structure are also present in the intact HCN2 channel. Furthermore, the similar effects of the mutations on HCN2 and CNGA1 channels suggest that these salt bridge interactions are also present in the intact CNGA1 channel. As disrupting the interactions leads to channels with more favorable opening transitions, the salt bridges appear to stabilize a closed conformation in both the HCN2 and CNGA1 channels. These results suggest that the HCN2 COOH-terminal crystal structure contains the C-linker regions in the resting configuration even though the CNBD is ligand bound, and channel opening involves a rearrangement of the C-linkers and, thus, disruption of the salt bridges. Discovering that one portion of the COOH terminus, the CNBD, can be in the activated configuration while the other portion, the C-linker, is not activated has lead us to suggest a novel modular gating scheme for HCN and CNG channels
The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol
The Pasadena Aerosol Characterization Observatory (PACO) represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1â2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA) is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively). The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively), with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA) in Los Angeles. Online analysis of water soluble organic carbon (WSOC) indicates that water soluble organic mass (WSOM) reaches maxima near 14:00â15:00 local time (LT), but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH_4NO_3 and (NH_4)_2SO_4 appear to be NH_3-limited in regimes I and II, but a significant excess of particulate NH_4^+ in the hot, dry regime III suggests less SO_4^(2â) and the presence of either organic amines or NH_4^+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF), which resolved three factors, corresponding to a hydrocarbon-like OA (HOA), semivolatile OOA (SV-OOA), and low-volatility OOA (LV-OOA). HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio), as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF). The hygroscopicity parameter Îș averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation (D_d). An experiment-averaged Îș_(org) of 0.14 was calculated, indicating that the highly-oxidized organic fraction of aerosol in Los Angeles is appreciably more hygroscopic than previously reported in urban areas. Finally, PACO will provide context for results forthcoming from the CalNex field campaign, which involved ground sampling in Pasadena during the spring and summer of 2010
Branching of the Falkner-Skan solutions for λ < 0
The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(â) = 1 and another with f'(â) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(â) = 1 and those with f'(â) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.
The impact of endoparasitic Wolbachia on the evolution of reproductive barriers during speciation in Drosophila ananassae from Southeast Asia and the South Pacific
There is still much work to be done in Biology to study and understand the mechanisms that drive the generation of new species. The model organism Drosophila ananassae represents and ideal model to untangle these issues. Previous genetic and mate discrimination studies of D. ananassae showed evidence that populations in Southeast Asia, and the South Pacific may be at a nascent stage of speciation (Schug et al. 2007, 2008). Subsequent preliminary studies demonstrated a potential postmating isolation barrier may exist between Bogor, Indonesia isofemale line 13 (BOG13) and females from Trinity Beach, Australia isofemale line 12 (TB12), which when hybridized and backcrossed to BOG13 females showed a decrease in offspring production. This may reflect a genetic isolation barrier, or alternatively, the effects of infection of one population or the other with endoparasite Wolbachia which is known in other organisms to cause postmating reproductive barriers. My study tested the hypothesis that the postmating barrier present between these two populations is driven by Wolbachia infection. I found that TB12 was infected with Wolbachia and BOG13 was not. A full reciprocal backcross preformed between these isofemale lines, and replicate using a TB12 isofemale line cured of the Wolbachia infection, revealed results consistent with Wolbachia-induced cytoplasmic incompatibilities (CI), that were removed when cured of the Wolbachia infection. A screen of additional strains previously shown to have high levels of mate discrimination showed the possibility that Wolbachia infection may have influenced the evolution of postmating reproductive barriers in additional populations of D. ananassae from throughout Southeast Asia and South Pacific. However, my mate discrimination experiments using infected versus cured isofemale lines from Bogor, Indonesia and Trinity Beach, Australia indicated that it is unlikely that Wolbachia infections directly influence mate discrimination behaviors, but are likely having an influence on postmating reproduction. Taken together this suggests that Wolbachia infections in populations of D. ananassae throughout its range in Southeast Asia and the South Pacific may have a significant influence on population divergence and speciation
Dehydration mechanism of a small molecular solid: 5-nitrouracil hydrate
Previous studies of the dehydration of 5-nitrouracil (5NU) have resulted in it being classified as a ââchannel
hydrateââ in which dehydration proceeds principally by the exit of the water molecules along channels in
the structure. We have re-examined this proposal and found that in fact there are no continuous channels
in the 5NU structure that would contribute to such a mechanism. Product water molecules would be
immediately trapped in unlinked voids in the crystal structure and would require some additional
mechanism to break loose from the crystal. Through a detailed structural analysis of the macro and micro
structure of the 5NU as it dehydrates, we have developed a model for the dehydration process based on
the observed development of structural defects in the 5NU crystal and the basic crystallography of the
material. The model was tested against standard kinetic measurements and found to present a satisfactory
account of kinetic observations, thus defining the mechanism. Overall, the study shows the necessity of
complementing standard kinetic studies with a parallel macro and micro examination of the dehydrating
material when evaluating the mechanisms of dehydration and decomposition processes
A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders
Introduction: Virtual reality (VR) interventions are increasingly used in individuals with brain injuries. The objective of this study was to determine the effects of VR on overall cognitive functioning in individuals with neurocognitive disorders (NCDs).
Methods: Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic review of the published literature on immersive and nonimmersive VR technologies targeting cognition in minor and major NCDs was conducted: (PROSPERO registration number: CRD42019121953).
Results: A total of 22 studies were included in the review, for an aggregated sample of 564 individuals with NCDs. Most of the studies were conducted on patients who had stroke (27.3%), followed by mild cognitive impairment (22.7%) and Alzheimer's disease (13.6%). VR interventions used for cognitive rehabilitation suggested to improve cognition (e.g. memory, dual tasking, and visual attention), and secondarily to psychological functioning (e.g. reduction of anxiety, higher levels of well-being, and increased use of coping strategies).
Conclusion: VR interventions are useful to improve cognition and psychological symptoms in NCDs
Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2 - chemical characterisation of dispersion strengthening precipitates
The composition of the sub-15 nm particles in six related vanadium high strength low alloy steels, made by simulated thin slab direct charged casting, has been determined using electron energy loss spectroscopy (EELS). Such particles are considered to be responsible for dispersion hardening. For the first time, particles down to 4 nm in size have had their composition fully determined. In all the steels, the particles were nitrogen and vanadium rich and possibly slightly sub-stoichiometric carbonitrides. Equilibrium thermodynamics predicted much higher carbon to metal atomic ratios than observed in all cases so that kinetics and mechanical deformation clearly control the precipitation process. Thus it is important to formulate the steel with this in mind
Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels
A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles
- âŠ