161 research outputs found

    Site-specific mutagenesis in Legionella pneumophila by allelic exchange using counterselectable ColE1 vectors

    Full text link
    To study the molecular pathogenesis of infection by Legionella pneumophila, a technique of site-specific mutagenesis by allelic exchange was evaluated. To develop this system, we optimized conjugal DNA transfer by isolating a mutant that functions 1000-fold more efficiently as a recipient than the wild type strain, identified two counter-selectable markers, rpsL and sacB, that function in L. pneumophila, and constructed a counterselectable Co1E1 vector. Allelic exchange of a L. pneumophila chrosomal gene was achieved at a frequency of 10-5 per transconjugant. The allelic exchange procedure itself did not alter the ability of L. pneumophila to infect macrophages, indicating that the system can be used to study this aspect of virulence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27030/1/0000018.pd

    Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3), an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards <it>L. pneumophila</it>.</p> <p>Methods</p> <p>We investigated the effects of <it>L. pneumophila </it>and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis.</p> <p>Results</p> <p><it>L. pneumophila </it>induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun) but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on <it>L. pneumophila </it>replication.</p> <p>Conclusions</p> <p>Taken together, human pulmonary cells produce hBD-3 upon <it>L. pneumophila </it>infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.</p

    Infection of Cultured Human Endothelial Cells by Legionella pneumophila

    Get PDF
    Legionella pneumophila is a gram-negative pathogen that causes a severe pneumonia known as Legionnaires' disease. Here, we demonstrate for the first time that L. pneumophila infects and grows within cultured human endothelial cells. Endothelial infection may contribute to lung damage observed during Legionnaires' disease and to systemic spread of this organism

    Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island

    Get PDF
    Background: Toxigenic Corynebacterium ulcerans can cause a diphtheria-like illness in humans and have been found in domestic animals, which were suspected to serve as reservoirs for a zoonotic transmission. Additionally, toxigenic C. ulcerans were reported to take over the leading role in causing diphtheria in the last years in many industrialized countries. Methods: To gain deeper insights into the tox gene locus and to understand the transmission pathway in detail, we analyzed nine isolates derived from human patients and their domestic animals applying next generation sequencing and comparative genomics. Results: We provide molecular evidence for zoonotic transmission of C. ulcerans in four cases and demonstrate the superior resolution of next generation sequencing compared to multi-locus sequence typing for epidemiologic research. Additionally, we provide evidence that the virulence of C. ulcerans can change rapidly by acquisition of novel virulence genes. This mechanism is exemplified by an isolate which acquired a prophage not present in the corresponding isolate from the domestic animal. This prophage contains a putative novel virulence factor, which shares high identity with the RhuM virulence factor from Salmonella enterica but which is unknown in Corynebacteria so far. Furthermore, we identified a putative pathogenicity island for C. ulcerans bearing a diphtheria toxin gene. Conclusion: The novel putative diphtheria toxin pathogenicity island could provide a new and alternative pathway for Corynebacteria to acquire a functional diphtheria toxin-encoding gene by horizontal gene transfer, distinct from the previously well characterized phage infection model. The novel transmission pathway might explain the unexpectedly high number of toxigenic C. ulcerans

    Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    Get PDF
    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF- a . Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF- k B pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.The authors acknowledge financial support from FEDER funds and Fondo Social Europeo through grants from the Spanish Ministry of Economy and Competitiveness (grants SAF2011-22922, SAF2011-22812) the Andalusian regional government Junta de Andalucía (grant CVI-7335) and the Centre of Networked Biomedical Research on Hepatic and Digestive Diseases (CIBERehd) which is funded by the Carlos III Health Institute and the Ramón Areces Foundation, Spain

    Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia rhizoxinica </it>is an intracellular symbiont of the phytopathogenic zygomycete <it>Rhizopus microsporus</it>, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of <it>B. rhizoxinica </it>HKI 0454 - a type strain of endofungal <it>Burkholderia </it>species.</p> <p>Results</p> <p>The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living <it>Burkholderia </it>species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, <it>B. rhizoxinica </it>lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors.</p> <p>Conclusions</p> <p><it>B. rhizoxinica </it>is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that <it>B. rhizoxinica </it>is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. <it>In silico </it>analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.</p

    Investigation of the Enteric Pathogenic Potential of Oral Campylobacter concisus Strains Isolated from Patients with Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Campylobacter concisus, a bacterium colonizing the human oral cavity, has been shown to be associated with inflammatory bowel disease (IBD). This study investigated if patients with IBD are colonized with specific oral C. concisus strains that have potential to cause enteric diseases. METHODOLOGY: Seventy oral and enteric C. concisus isolates obtained from eight patients with IBD and six controls were examined for housekeeping genes by multilocus sequence typing (MLST), Caco2 cell invasion by gentamicin-protection-assay, protein analysis by mass spectrometry and SDS-PAGE, and morphology by scanning electron microscopy. The whole genome sequenced C. concisus strain 13826 which was isolated from an individual with bloody diarrhea was included in MLST analysis. PRINCIPAL FINDINGS: MLST analysis showed that 87.5% of individuals whose C. concisus belonged to Cluster I had inflammatory enteric diseases (six IBD and one with bloody diarrhea), which was significantly higher than that in the remaining individuals (28.6%) (P<0.05). Enteric invasive C. concisus (EICC) oral strain was detected in 50% of patients with IBD and none of the controls. All EICC strains were in Cluster 1. The C. concisus strain colonizing intestinal tissues of patient No. 1 was closely related to the oral C. concisus strain from patient No. 6 and had gene recombination with the patient's own oral C. concisus. The oral and intestinal C. concisus strains of patient No. 3 were the same strain. Some individuals were colonized with multiple oral C. concisus strains that have undergone natural recombination. CONCLUSIONS: This study provides the first evidence that patients with IBD are colonized with specific oral C. concisus strains, with some being EICC strains. C. concisus colonizing intestinal tissues of patients with IBD at least in some instances results from an endogenous colonization of the patient's oral C. concisus and that C. concisus strains undergo natural recombination

    Linking Hydrothermal Geochemistry to Organismal Physiology: Physiological Versatility in Riftia pachyptila from Sedimented and Basalt-hosted Vents

    Get PDF
    Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that -contrary to previous assertions- Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution

    The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist

    Get PDF
    Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation

    Lung epithelium as a sentinel and effector system in pneumonia – molecular mechanisms of pathogen recognition and signal transduction

    Get PDF
    Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point to open questions. The analysis of lung epithelial function in the host response in pneumonia may pave the way to the development of innovative highly needed therapeutics in pneumonia in addition to antibiotics
    corecore