922 research outputs found

    Seasonality in epidemic models: a literature review

    Get PDF
    We provide a review of some key literature results on the influence of seasonality and other time heterogeneities of contact rates, and other parameters, such as vaccination rates, on the spread of infectious diseases. This is a classical topic where highly theoretical methodologies have provided new insight on the seemingly random behavior observed in epidemic time-series. We follow the line of providing a highly personal non-systematic review of this topic, mainly based on the history of mathematical epidemiology and on the impact of reviewed articles. Our aim is to stress some issues of increasing interest, such as the public health implications of the biomathematical literature and the impact of seasonality on epidemic extinction or elimination

    Time heterogeneous programs of vaccination awareness: modeling and analysis

    Get PDF
    We investigate the role of time heterogeneity of public health systems efforts in favoring the propensity of parents to vaccinate their newborns against a target childhood disease. The starting point of our investigation is the behavioral-epidemiology model proposed by d’Onofrio et al. (PLoS ONE 7:e45653, 2012), where the PHS effort was assumed to be constant. We also consider the co-presence of another layer of temporal heterogeneity: seasonality in the contact rate of the disease. We mainly assume that the effort is periodic with a 1-year period because of alternating working and holiday periods. We show that if the average effort is larger than a threshold, then the disease can be eliminated leading to an ideal equilibrium point with 100% of vaccinated newborns. A more realistic disease-free equilibrium can also be reached, under a condition that depends on the whole form of the time profile describing the PHS effort. We also generalize our disease elimination-related results to a wide class of time-heterogenous PHS efforts. Finally, we analytically show that if the disease elimination is not reached, then the disease remains uniformly persistent

    A fit to the simultaneous broadband spectrum of Cygnus X-1 using the transition disk model

    Get PDF
    We have used the transition disk model to fit the simultaneous broad band (2−5002-500 keV) spectrum of Cygnus X-1 from OSSE and Ginga observations. In this model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk, where the temperature varies rapidly with radius. In an earlier attempt, we demonstrated the viability of this model by fitting the data from EXOSAT, XMPC balloon and OSSE observations, though these were not made simultaneously. Since the source is known to be variable, however, the results of this fit were not conclusive. In addition, since only once set of observations was used, the good agreement with the data could have been a chance occurrence. Here, we improve considerably upon our earlier analysis by considering four sets of simultaneous observations of Cygnus X-1, using an empirical model to obtain the disk temperature profile. The vertical structure is then obtained using this profile and we show that the analysis is self- consistent. We demonstrate conclusively that the transition disk spectrum is a better fit to the observations than that predicted by the soft photon Comptonization model. Since the temperature profile is obtained by fitting the data, the unknown viscosity mechanism need not be specified. The disk structure can then be used to infer the viscosity parameter α\alpha, which appears to vary with radius and luminosity. This behavior can be understood if α\alpha depends intrinsically on the local parameters such as density, height and temperature. However, due to uncertainties in the radiative transfer, quantitative statements regarding the variation of α\alpha cannot yet be made.Comment: 8 figures. uses aasms4.sty, accepted by ApJ (Mar 98

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset
    • …
    corecore