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Abstract We investigate the role of time heterogeneity of public health systems efforts
in favoring the propensity of parents to vaccinate their newborns against a target child-
hood disease. The starting point of our investigation is the behavioral-epidemiology
model proposed by d’Onofrio et al. (PLoS ONE 7:e45653, 2012), where the PHS
effort was assumed to be constant. We also consider the co-presence of another layer
of temporal heterogeneity: seasonality in the contact rate of the disease. We mainly
assume that the effort is periodic with a 1-year period because of alternating working
and holiday periods. We show that if the average effort is larger than a threshold,
then the disease can be eliminated leading to an ideal equilibrium point with 100% of
vaccinated newborns. A more realistic disease-free equilibrium can also be reached,
under a condition that depends on the whole form of the time profile describing the
PHS effort. We also generalize our disease elimination-related results to a wide class
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of time-heterogenous PHS efforts. Finally, we analytically show that if the disease
elimination is not reached, then the disease remains uniformly persistent.

Keywords Infectious diseases · Seasonality · Vaccine · Behavior · Public health

Mathematics Subject Classification 92D30 · 37B55

1 Introduction

In the age of post-trust society [24], a significant development in mathematical epi-
demiology concerns the role of behavioral feedback as a determinant of disease spread
and control. In turn, human behavior depends on the available information and rumors
concerning the spread of an infectious disease. A new discipline, termed behavioral
epidemiology has emerged, whose aim could be summarized as follows: introducing
the ‘human factor’ into epidemic models. This is a Copernican revolution with respect
to the statistical mechanics-based classical models [2,5,11,22,26], where i) individu-
als are modeled as interacting particles; and ii) contagion is modeled by means of the
law of mass action. Classical representation most often fails when trying to represent
the implementation of vaccination strategies in contemporary societies.

In this work we focus on behavior-dependent voluntary vaccination. Since vaccina-
tion is not mandatory, significant anti-vaccine groups have emerged and an increasing
number of people are hesitant towards, or object to, vaccination [20,21,32,34]. Hesi-
tancy and refusal of vaccination are based on pseudo-rational reasoning, mostly from
the exaggerated perception of dangers associated with adverse-events of vaccines
against diseases that are rare nowadays. This reasoning frequently ignores the fact
that many of these disease became rare precisely because of mass vaccination [1,4].
Not surprisingly, outbreaks of infectious diseases are followed by an increased demand
of vaccines, since propensity to vaccinate follows the incidence or prevalence of the
target disease [3,6,13,25,27,29].

Thedynamics of vaccine propensity is inducedby the tradeoff between twoopposite
‘forces’: the perceived vaccine-related risks (which decreases vaccination propensity
[17,28]) and the actual disease-related risks (which increases vaccination propensity
[3,27,29]).

If the vaccine propensity dynamics are very fast at population level, one can
approximately assume that vaccine propensity is a phenomenological function of the
available information on disease prevalence [12]. This is the approach used to build the
susceptible-infectious-recovered (SIR)-like behavioral models introduced in [13,14],
where two key results are obtained: i) disease elimination is amission impossible since
the proportion of parents that are not influenced by information and rumors needed to
eliminate the disease must be equal or greater the elimination threshold for mandatory
vaccination; and ii) significant recurrent epidemics are predicted in the case where
the decision to vaccinate also depends on the past history of the disease. However, in
many cases the dynamics can be far from instantaneous. As a consequence, vaccine
propensity ought to be considered as a state variable.
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Aclassical game-theoreticmodel of opinion dynamics between two opposite strate-
gies in a given population is the imitation game (IG). An IG complementing SIRmodel
has been adopted in [3], where the two above-mentioned strategies are ‘to vaccinate’
and ‘to not vaccinate’. Namely, in [3] it has been assumed that the ‘force’ against
the propensity to vaccinate is irrespective of any information on vaccine side-effects,
whereas the one increasing vaccine propensity is an increasing function of disease
prevalence.

In [12], an IGmodel has been proposed where the abovementioned ‘force’ depends
on the information available on vaccine-induced side effects. Differently from [3,
12] showed that a huge disproportion between the perceived risks of disease and
vaccination is necessary to be able to achieve high vaccination coverage. Furthermore,
target-disease elimination is a ‘mission impossible’ in practice (although it remains
theoretically possible).

A limitation of the pure IG-based approaches used in [3,12] is that they do not take
into account the important actions enacted by Public Health Systems (PHS) to favor
vaccination uptake. The existence of such actions is the basis of the model introduced
in [16]. The main analytical result of [16] is that if the awareness campaigns enacted
by a PHS are sufficiently intense, then disease elimination is possible.

The aim of this work is to go beyond an important limitation of [16], where PHS
efforts have been assumed to be constant in time. On the contrary, many complex
phenomena can lead to non-constant and periodic efforts. One of the most impor-
tant effects is the yearly reduction of PHS effort during periods of work holidays,
compounded with awareness campaigns being more intense during school terms.

Another important factor that can influence the dynamics of vaccine propensity,
which will be taken into account in this work, is seasonality in the disease contact rate.
This phenomenon, as is well known, can have a major impact on disease dynamics
in absence of vaccination (see the review paper, [8], in this special issue). Note that
seasonality in contact rate also impacts voluntary vaccination scenarios [15], even in
the presence of PHS actions, as recently shown in [7].

2 A vaccination model with seasonality and periodic PHS intervention

In this section, starting from the model of voluntary vaccination under the PHS inter-
ventions proposed in [16], we consider periodic changes in such interventions and
their impact on the stability of equilibrium points.

Let us consider the following generic SIR model with time-varying vaccination of
newborns:

Ṡ = μ(1 − p(t)) − μS − βc(t)SI, (1a)

İ = βc(t)SI − (μ + ν)I. (1b)

Here the state variables represent the fractions of susceptible subjects (S) and infectious
subjects (I ) at time t . The parameters μ and ν are positive constants and represent,
respectively, the inverse of life expectancy at birth and the rate of recovery from the
disease. The transmission term is given by β(t) = β c(t), where β is the (positive
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constant) baseline transmission rate and c(t) is a positive time periodic fluctuation
function such that 〈c(t)〉 = 1. This means that the fluctuation of the transmission
can be seen as the result of fluctuations of the per capita contact rate of infectious
individuals and/or the probability that a contact between a susceptible individual and
an infectious individual results in transmission [26].

The quantity p(t) in (1) represents the fraction at time t of the parents that arewilling
to vaccinate their children. We assume that the population of parents is proportional to
the total (constant) population and that it may be divided into two mutually exclusive
groups: parents who are pro-vaccine, and vaccinate their children (whose fraction
is denoted by the above mentioned quantity p(t)), and parents that do not want to
vaccinate their children (due to hesitancy or refusal), A(t). Therefore p(t)+ A(t) = 1
for all t .

Therefore, the imitation game is a double contagion of idea process [33]:

ṗ = −α(p)pA + θ(I )pA (2a)

Ȧ = α(p)pA − θ(I )pA (2b)

Both the functions α(p) and θ(I ) are, in general, assumed to be increasing and positive
functions [16]. The action of PHS to promote awareness about the relevance of the
vaccination leads to the passage from the non-vaccination group to the pro-vaccination
one as follows:

ṗ = −α(p)pA + θ(I )pA + γ̃ (t)A, (3a)

Ȧ = α(p)pA − θ(I )pA − γ̃ (t)A, (3b)

where γ̃ (t) is a positive function that summarizes the efforts taken by the public
health agencies (such as information, education, availability of vaccination infrastruc-
tures and so on) in influencing perceptions regarding both vaccination and disease
consequences.

As a special case, we consider:

θ(I ) = kθ I α(p) = kα p,

where θ and α are positive constant and k is a scale factor (useful in the practice, and
to compare with [16], but not strictly necessary from a mathematical viewpoint) and

γ (t) = kγ̃ (t).

Using A = 1 − p, from (1) and (3) we get the following system:

Ṡ = μ(1 − p(t) − S) − βc(t)SI (4a)

İ = βc(t)SI − (μ + ν)I (4b)

ṗ = k(1 − p)
[
(θ I − α p)p + γ (t)

]
. (4c)
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Model (4) has been investigated in the case of constant γ (t) in [16], where it has been
shown that if

γ > αp2cr , (5)

where

pcr = 1 − 1

R0
, (6)

is the eradication threshold for the SIR model with constant vaccination rate constant
p.

Here we assume that the function γ (t) is periodic with period T . In particular, we
take T = 1 year, but other values of T can be considered, and we will briefly analyze
them. Finally, we assume that β(t) is either constant or one-year periodic.

The key epidemiological problem considered here is to characterize the PHS inter-
vention modeled by γ (t) in the fundamental case where it is able to eradicate the
disease.

3 The disease-free scenario

In this section we will investigate the cases where the dynamics of the model is char-
acterized by having I (t) = 0. This scenario can be spontaneous (i.e. the disease was
never introduced in the target population but the PHS enact vaccinations campaigns
to prevent future epidemics) or vaccine-induced. The latter case is, of course, the most
interesting and in the following we will uniquely refer to it.

3.1 All vaccinators equilibrium

System (4) admits two disease-free equilibria. The first one is an all vaccinators
equilibrium, where 100% of parents want to vaccinate their children. It is given by

E1 = (0, 0, 1). (7)

The stability of E1 depends on the average value of γ (t). The following theorem holds:

Theorem 1 If
〈γ (t)〉 > α, (8)

then E1 is globally asymptotically stable. If

〈γ (t)〉 < α, (9)

then E1 is unstable.

Proof Equation (4c) may be rewritten as follows:

ṗ = k(1 − p)
[
θ I p + α(1 − p2) + γ (t) − α

]
,
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so that
ṗ ≥ k(1 − p)

[
γ (t) − α

]
. (10)

Therefore, one straightforwardly gets that if (8) holds, then p(t) → 1, i.e. E1 is GAS.
On the other hand, linearizing around E1, with (S, I, p) = E1 + (s, i, y), it follows
that the linear dynamics of p is ruled by:

ẏ = (α − γ (t))y. (11)

Hence if (9) holds, then E1 is unstable. ��
In the following we assume that the inequality (9) holds, so that E1 is unstable.

3.2 Mixed state equilibrium

The second equilibrium state is the disease-free state characterized by the absence of
infectious subjects, I = 0. The disease-free state is a periodic vector function:

η(t) = (σ (t), 0, x(t)), (12)

where x(t) is the unique one-year periodic solution of the following scalar differential
equation with a periodically varying parameter (SDEPVP):

ẋ(t) = k(1 − x)
[
−α x2(t) + γ (t)

]
, (13)

with initial conditions (see discussion below)

x(0) = p(0),

and σ(t) is the solution of the linear SDEPVP, depending on x(t),

σ̇ (t) = μ(1 − x(t) − σ(t)), (14)

with initial condition σ(0) = S(0) (see discussion below).
We note here that the solutions of scalar differential equations with periodic coef-

ficients of period T are asymptotically periodic with the same period [18]. Thus x(t)
and, in turn, σ(t) are asymptotically periodic with period T .
We now briefly investigate the properties x(t) and then those of σ(t).

Properties of x(t).

(i) First, we note that (13) may be rewritten as follows:

ẋ(t)

k(1 − x(t))
= −α x2(t) + γ (t). (15)
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The average values of both sides read

1

k
log(1 − x(t)) − 1

k
log(1 − x(t + T )) = −α 〈x2(t)〉 + 〈γ (t)〉, (16)

asymptotically implying
〈γ (t)〉 = α 〈x2(t)〉. (17)

This last condition means that if the effort provided by PHS, γ (t), is able to eradicate
the disease, then its average value is proportional to the square of the resulting steady
state vaccination rate x(t) at the eradication.

Now, let us rewrite the functions γ (t) and x(t) as Fourier series:

γ (t) = Γ0 +
+∞∑

h=1

Γh cos(hωt − φ
γ

h ) (18)

x(t) = X0 +
+∞∑

h=1

Xh cos(hωt − φx
h ), (19)

where ω = 2π/T .
As a consequence, the equality (17) can be written as

Γ0 = α

(

X2
0 + 1

2

+∞∑

h=1

X2
h

)

. (20)

(ii) Second, writing
ẋ

k
= γ (t) − αx2 − xγ (t) + αx3,

one gets
〈γ x〉 = α〈x3〉,

and from

xn
ẋ

k
= xn(γ (t) − αx2 − xγ (t) + αx3)

(with n = 1, 2, 3, . . . ) it follows that

〈γ xn+1〉 = α〈xn+3〉.

(iii) Third, from the following differential inequality:

ṗ ≥ k(1 − p)
[
(0 − α p)p + γ (t)

]
, (21)

it follows that if x(0) = p(0) then

p(t) ≥ x(t). (22)
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Properties of σ(t).
(i) It is easy to show that

〈σ(t)〉 = 1 − 〈x(t)〉. (23)

More in general, from (14) and (19) we get:

σ(t) = 1 − X0 −
+∞∑

h=1

μ
√

μ2 + ω2h2
Xh cos(hωt − φx

h − arg(μ + iωh)). (24)

Since in any case μ 	 1/T < 2π/T , it follows that for h ≥ 1:

μ
√

μ2 + ω2h2
≈ μ

ω
,

arg(μ + iωh) ≈ π

2
,

implying that the Fourier coefficients X1, X2, . . . are strongly filtered and σ(t) can
be approximated as follows:

σ(t) ≈ 1 − X0 − μ

ω

+∞∑

h=1

1

h
Xh sin(hωt − φx

h ). (25)

(ii) Finally, from (4a) one has,

Ṡ(t) ≤ μ(1 − p(t) − S(t)) ≤ μ(1 − x(t) − S(t)), (26)

so that the following relationship between S(t) and σ(t) holds true provided that
σ(0) = S(0):

S(t) ≤ σ(t). (27)

3.3 Stability of the mixed state equilibrium

It is of interest to assess how the actions of the PHS (i.e. delivering vaccinations and
the related effort to increase the vaccine uptake) must be planned to ensure that in
case of introduction/re-introduction of the disease, it will not become endemic. Of
course, the ideal case is the enactment of efforts such that the system reaches the
all-vaccinators equilibrium we have studied in Sect. 3.1. However, the action of PHS
has a cost, so that in many cases this is unfeasible. In such scenarios, it is important to
guarantee that at least the mixed disease-free state is globally stable. In the practice,
the global asymptotic stability (GAS) of an equilibrium state or point characterized
by no infectious subjects is of interest. Indeed, GAS means that even if the disease is
re-introduced in a population and a large epidemic breaks out it will any case become
extinct and the disease will not become endemic.

Theorem 2 If
R0〈c(t)σ (t)〉 < 1, (28)
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where R0 is the basic reproduction number of the SIR epidemic model with constant
contact rate (c(t) = 1) and absence of vaccination, i.e.:

R0 = β

μ + ν
,

then the mixed state equilibrium η(t) is globally asymptotically stable. If

R0〈c(t)σ (t)〉 > 1 (29)

then η(t) is unstable.

Proof System (4) may be linearized around the mixed state equilibrium by setting:

(S(t), I (t), p(t)) = (σ (t), 0, x(t)) + (s(t), i(t), u(t)).

This yields, of course, a linear three dimensional system, where the differential equa-
tion for i(t) does not depend on (s, u):

i ′(t) = (βc(t)σ (t) − (μ + ν)) i(t). (30)

It easily follows that the LAS condition is (28). Indeed, one can write

βc(t)σ (t) = β〈c(t)σ (t)〉 + q(t),

where q(t) are oscillating terms with zero mean value, and in turn

i(t) = i(0) exp

(
(β〈c(t)σ (t)〉 − (μ + ν)) t +

∫ t

0
q(z)dz

)
.

Thus, if (28) holds then i(t) → 0.
Note that in case of constant contact rate (impying c(t) = 1), the LAS condition (28)
becomes

R0〈σ(t)〉 < 1,

which, in view of (23), reads as follows:

R0(1 − 〈x(t)〉) < 1, (31)

and, in turn, as:
〈x(t)〉 > pcr , (32)

where pcr is the eradication threshold for SIR epidemic diseases with constant contact
rate and constant vaccination rate, i.e.:

pcr = 1 − 1

R0
.
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Not surprisingly, the LAS condition (28) also guarantees the GAS of the periodic DFS.
This easily follows from the following differential inequality:

İ (t) = I (t)(βc(t)S(t) − (μ + ν)) ≤ I (t)(βc(t)σ (t) − (μ + ν)). (33)

Finally, it is easy to check that the mixed state equilibrium is unstable under condition
(29). ��
Remark 1 From a purely mathematical point of view, it is of interest to study the
borderline case R0〈c(t)σ (t)〉 = 1, which was not considered in the above analysis.

This case can be analyzed by taking into the account the state variable V (t) describ-
ing the fraction of vaccinated people. The dynamics is described by the equation
V̇ = μ(p(t) − V ). In view of (22), it holds that V̇ ≥ μ(x(t) − V ). Therefore,
V (t) ≥ W (t), where W is the solution of Ẇ = μ(x(t) − W ). Thus from (33) it
follows:

İ (t) ≤ I (t)(βc(t)(1 − I − W (t)) − (μ + ν)),

and therefore I (t) ≤ y(t), where y(t) solves the following Riccati equation with
periodic coefficients:

ẏ = y(t) (βc(t)(1 − W (t)) − (μ + ν)) − βc(t)y2,

with initial condition y(0) = I (0). In conclusion, in the borderline case,R0〈c(t)σ (t)〉
= 1 the DFS is GAS.

3.4 Differences with the case of constant PHS effort

In the case of constant PHS efforts, γ , the eradication condition is given by (5). There-
fore one naively could think that for periodic PHS efforts the eradication condition
might be 〈γ 〉 > αp2cr . However, this is not the case as we have seen. In particular, in
the case c(t) = 1, from (20) it follows that

X0 =
√√√√ 1

α
Γ0 − 1

2

+∞∑

h=1

X2
h .

Thus, from (32) it follows that

Γ0 > α

(

p2cr + 1

2

+∞∑

h=1

X2
h

)

. (34)

The inequality (34) shows that the above conjecture is wrong, and in that in some
cases, the average value Γ0 has to be substantially larger than αp2cr . In other words,
eradication of the disease depends on the whole function γ (t) and not only on its aver-
age. Nevertheless, a rough, but sufficient, condition for eradication may be obtained
by:
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γmin > αp2cr ,

where γmin = mint∈[0,T ] γ . This can be obtained, in view of (4c), from the differential
inequality:

ṗ > k(1 − p)(−αp2 + γmin),

and then proceeding along lines similar to those illustrated above.
We can also determine the effect of a γ (t) whose average value is such that:

〈γ (t)〉 ∈ [αp2cr , α). (35)

We remind the reader that in the scenario where γ (t) and β(t) are constant, the
condition γ ∈ [αp2cr , α) guarantees that p(t) reaches and overcomes pcr without
‘coming back’ to lower values. In the case of time-varying γ (t) however, the condition
(35) can only guarantee that p(t) reaches the value pcr at least once. Formally, if
p(0) < pcr , and condition (35) holds, then there exists a t̂ , such that p

(
t̂
) = pcr .

Indeed, rewriting equation (4c) as follows:

ṗ = k(1 − p)
[
θ I p + α(p2cr − p2) + γ (t) − αp2cr

]
,

as long as p(t) < pcr , we obtain

ṗ ≥ k(1 − p)
[
γ (t) − αp2cr

]
,

easily confirming our claim.
One cannot guarantee, however, the impossibility of the reduction of p(t) under

pcr . This is easily seen, for example by considering the case where k is sufficiently
large to have a rapid response to the PHS action, and γ (t) is null (or very small) for a
sufficiently large time in [0, T ].

3.5 Solving the SDEPVP equation (13)

3.5.1 Small oscillations affecting a constant PHS effort

Let us suppose now that small oscillations affect a constant PHS effort,

γ (t) = γ0 + εΩ(t),

with 0 < ε 	 1. Following the general methods of the theory of small forcing
oscillations [23], we may rewrite the unknown function x(t) as a series of powers
of ε:

x(t) = x0 +
+∞∑

q=1

xq(t)ε
q .
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Substituting this in (13) we obtain the infinite formally solvable system of the form

0 = f0(x0; γ0),

ẋq(t) = fq(x0, . . . , xq ; γ0,Ω(t)), q = 1, 2, . . . .

where the ODE for the q–th state variable is linear in xq(t). Thus one can solve first
for x0, and then for x1(t), up to a chosen index n. For example, if n = 2, one gets:

αx20 = γ0,

ẋ1 = k(1 − x0)Ω(t) − (2αx0(1 − x0) + Ω(t)) x1,

ẋ2 = 2αx0x
2
1 − α(1 − x0)x1 − 2αx0(1 − x0)x2,

whose formal solution is:

x0 =
√

γ0

α
,

x1(t) = e(−2αx0(1−x0)t−W (t))
∫ t

0
e(2αx0(1−x0)z+W (z))k(1 − x0)Ω(z)dz,

x2(t) =
∫ t

0
e−2αx0(1−x0)(t−z)

(
2αx0x

2
1 (z) − α(1 − x0)x1(z)

)
dz,

where

W (t) =
∫ t

0
Ω(s)ds.

The above solution is quite complex to be analyzed, even in the simple case Ω(t) =
cos(ωt − φ).

3.5.2 The case of piecewise-constant effort γ (t)

The differential equation for x(t) can be semi-analytically solved in the important case
where γ (t) is piecewise constant. From the public health viewpoint this case is of great
interest because, in practice due to logistic limitations, the effort of the PHS cannot
vary in a continuous manner, but it remains constant for more or less long periods of
time [9]. An idealized case would be, for example, a two-valued γ (t) assuming a low
value during the holidays and a larger value during the work terms.

For the sake of the simplicity, let us consider the basic case of a single holiday term,
yielding

γ (t) =
{

αx2U if t ∈ [0, T1)
αx2L if t ∈ (T1, T )

, (36)

where
0 ≤ xL < xU .

We also set xL < 1, otherwise we are in the trivial case where the steady state solution
is x̃(t) = 1 and x(t) → 1 for t → +∞.
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In [0, T1) we have to solve the following differential equation:

ẋ(t)

(1 − x)(xU + x)(xU − x)
= αk,

with initial condition x(0) = a, whose solution is of the form:

Ψ (x) = Ψ (a) eαkt ,

so that
x(t) = Ψ −1

(
Ψ (a)eαkt

)
.

Defining

h = x(T1) = Ψ −1
(
Ψ (a) eαkT1

)
,

then in (T1, T ) we have to solve:

ẋ(t)

(1 − x)(xL + x)(xL − x)
= αk,

together with x(T1) = h, whose solution is of the form:

Ψ̃ (x) = Ψ̃ (h) eαk(t−T1),

and hence
x(t) = Ψ̃ −1

(
Ψ̃ (h) eαk(t−T1)

)
.

As far as the two functions Ψ (x) and Ψ̃ (x) are concerned, defining

G(x, xq) = |1 − x |
1

x2q−1 |xq + x | 1
2xq (xq+1) |xq − x | 1

2xq (xq−1) ,

one has
Ψ (x) = G(x, xH ); Ψ̃ (x) = G(x, xL ).

Since we are interested in finding the periodic solution for x(t), then a is not known
and it is the solution of the following equation

a = x(T ),

that is,
a = Ψ̃ −1

(
Ψ̃ (h(a)) eαk(T−T1)

)
,

where h(a) reminds us that h = x(T1) depends on a.
Of course, in the analysis above, one has to take into the account whether xL or

xU or both lie in [0, 1], because their position determines the signs of the moduli in
the utility function G(x, xq). For example, we have already mentioned that if xL ≥ 1
then x(t) → 1 for t → +∞.
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4 Time-heterogeneous contact rates: going beyond the periodicity

We assumed that the PHS effort is periodic with a one year period. An effort planned
over an integer number of years, or over a number of seasons greater that four, does
not change our third result. In the purely theoretical case where the period T is an
irrational number of years, and c(t) remains one year periodic, then the eradication
condition must be modified as follows:

R0

(
lim

T→+∞
1

T

∫ T

0
c(t)σ (t)dt

)
< 1. (37)

In reality, following the lines of the works by Thieme on non-behavioral epidemic
models with general time-varying parameters [30,31], we can consider very general
time-heterogeneous PHS efforts, γ (t), and contact rates. Namely, defining for a real
positive function f (t) its generalized mean:

GenAvg( f (.)) = lim
t→+∞

1

t

∫ t

0
f (z)dz, (38)

it holds that:

Theorem 3 If
GenAvg(γ (.)) > α, (39)

then E1 is globally asymptotically stable. If

GenAvg(γ (.)) < α, (40)

then E1 is unstable.

and:

Theorem 4 If
R0 GenAvg(c(.)σ (.)) < 1, (41)

then the mixed state equilibrium η(t) is globally asymptotically stable. If

R0 GenAvg(c(.)σ (.)) > 1 (42)

then η(t) is unstable.

The proofs of the above theorems are very similar to the proofs of the corresponding
Theorems 1 and 2. For example, to proof the instability condition (40), one gets the
linearized equation (11), whose solution can be written as follows:

y(t) = y(0) exp

(
t

(
α − 1

t

∫ t

0
γ (z)dz

))
.

As a consequence, if (40) holds, then y(t) → +∞, i.e., E1 is unstable.
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5 Uniform persistence

From the epidemic point of view, the antisymmetric case of GAS is uniform persis-
tence. Indeed in such a case, showing that the system is uniformly persistent means
showing that the disease remains endemic in a non-constant fashion.

5.1 Invariant region

Lemma 1 Any solution of (4) starting in the region

Ω = {(S, I, p) ∈ R3+ : 0 ≤ S + I ≤ 1, 0 ≤ p ≤ 1}, (43)

does not leave it by crossing one of its boundaries. In other words, Ω is a positively
invariant set for (4). Further, it holds that

lim sup
t→∞

(S(t) + I (t) − σ(t)) = 0

Proof Set N = S + I and y = N − σ(t). Then:

ẏ = −μy − μ(p − x) − ν I

Since p(t) ≥ x(t) and I ≥ 0, it follows that lim supt→∞ y(t) = lim supt→∞ (N − σ)

= 0. ��
We know that the all-vaccinators equilibrium E1 = (0, 0, 1) is unstable if 〈γ (t)〉 < α.
On the other hand, it is easy to check that the plane p(t) = 1 is a stable manifold for
E1. Therefore, for any triple x0 = (S0, I0, p0) in the interior of Ω , it is not possible
that p(t, x0) → 1 for t → ∞. Therefore, there exists a time t̃ > 0 such that any
solution of (4) starting in the interior of Ω will be confined in the region

Ω = {(S, I, p) ∈ R2+ : 0 ≤ S + I ≤ 1, 0 ≤ p ≤ p̃}. (44)

where
p̃ = sup

(t,x0)∈(t̃,+∞)×Ω̊

p(t, x0) < 1.

5.2 Uniform persistence

The SIp model (4) admits the locally asymptotically stable disease-free solution (7)
under condition (28). Here we show that (4) is uniformly persistent under the reversed
condition (29).

Let X0 and ∂X0 be subsets of a complete metric space X with metric d, such that
X0 ∩ ∂X0 = ∅ and X0 ∪ ∂X0 = X . Let X0 be open and positively invariant for a
periodic semiflow Q(t), and ∂X0 be a closed subset. Recall the following definition
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([35], Def. 3.1.1, p. 64): A T -periodic semiflow Q(t) is said to be uniformly per-
sistent with respect to (X0, ∂X0), if there exists η > 0 such that for any x ∈ X0,
lim inf t→+∞ d(Q(t)(x0), ∂X0) ≥ η.

In our case, we begin by taking

X = {(S, I, p) ∈ R2+ × [0, p̃]}, X0 = {(S, I, p) ∈ X : I > 0},

and denote

∂X0 := X\X0 = {(S, I, p) ∈ X : I = 0 }. (45)

Then, we introduce the Poincaré map:

P : x0 ∈ X → u(T, x0) ∈ X.

where u(t, x0) is the unique solution of the system (4) corresponding to initial data
x0 = (S0, I0, p0) ∈ X .

Given the disease-free solution (7), set

E := η(0) = (σ (0), 0, x(0)) .

Denote with ‖ · ‖ a norm in R3. We first prove the following result:

Lemma 2 If (29) is satisfied, then there exists δ∗ > 0 such that, for any x0 ∈ X0,

lim sup
n→+∞

d
(
Pn(x0), E

) ≥ δ∗. (46)

Proof Condition (29) may be written as

1

T

∫ T

0
βc(t)σ (t)dt > (μ + ν) .

Then, there exists an ε > 0 such that

1

T

∫ T

0
(1 − ε)βc(t)σ (t)dt > (μ + ν) . (47)

Take δ < ε. By continuity of the flow of (7) with respect to the initial data, there exists
δ∗ := δ∗(δ) > 0 such that for all x0 ∈ X0 with ‖ x0 − E ‖≤ δ∗, it holds that

‖ u(t, x0) − u(t, E) ‖< δ, ∀t ∈ [0, T ].

Now we show (46). Assume on the contrary that

lim sup
n→+∞

d
(
Pn(x0), E

)
< δ∗,
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for some x0 ∈ X0. Without loss of generality, we assume that, for any n > 0,

d
(
Pn(x0), E

)
< δ∗, (48)

and therefore

‖ u(t, Pn(x0)) − u(t, E) ‖< δ∗, ∀t ∈ [0, T ].

By the propriety of composition of semiflows it follows that

u(t + nT, x0) = Q(t + nT )(x0) = Q(t)Q(nT )(x0) = Q(t)(Pn(x0)),

and therefore

u(t + nT, x0) = u(t, Pn(x0)).

Furthermore, for any t ≥ 0 let t = nT + t ′, where t ′ ∈ [0, T ] and n = [ t
T

]
(the

greatest integer less than or equal to t/T ).
It follows that

‖ u(t, x0) − u(t, E) ‖=‖ u(t ′, Pn(x0)) − u(t ′, E) ‖< δ, ∀t ≥ 0. (49)

where the inequality comes from (48).
Recall that for all t ≥ 0, u(t, x0) is the solution (S(t), I (t), p(t)) of (4) with initial

condition x0. Therefore from (49), it follows:

|S(t) − σ(t)| < δ,

and therefore

S(t) > σ(t) − δ > σ(t) − ε, ∀t ≥ 0.

This last condition implies the following differential inequality:

İ > βc(t)σ (t)(1 − ε)I − (μ + ν)I. (50)

Given the comparison equation:

İ = βc(t)σ (t)(1 − ε)I − (μ + ν)I , (51)

for any nonnegative initial condition I (0) of (51), since from (47) it follows that

∫ T

0
(1 − ε)βc(t)σ (t)dt >

∫ T

0
(μ + ν) dt.

We have I (t) → ∞ for t → ∞ and therefore also I (t) → ∞ for t → ∞, which is a
contradiction since I is bounded. Therefore (46) holds. ��
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Now we can state the uniform persistence result, checking that the requirements
of the strong repellers theorem (assumptions (A1) and (A2) in the Appendix) are
satisfied.

Theorem 5 If (29) is satisfied, then there exists η > 0 such that every solution x(t) =
(S(t), I (t), p(t)) of model (4) with initial condition x0 = (S0, I0, p0) ∈ X0 satisfies:

lim inf
t→+∞ I (t) ≥ η. (52)

Proof First of all, we prove that the Poincarémap defined above is uniformly persistent
with respect to (X0, ∂X0). Consider the set:

M∂ = {x0 ∈ ∂X0 : Pn(x0) ∈ ∂X0,∀n ∈ N}.
From (45) we have that {(S, 0, p) : S ≥ 0, 0 ≤ p ≤ p̃} ⊂ M∂ .

Then, any solution starting in ∂X0 satisfies S(t) > 0, I (t) = 0, 0 ≤ p ≤ p̃ for all
t > t̃ . This implies that

M∂ = {(S, 0, p) : S ≥ 0, 0 ≤ p ≤ p̃},
and

E := η(0) = (σ (0), 0, x(0))

is the only one fixed point of P in M∂ and {E}. Recalling that

WS(E) = {x0 ∈ X : lim
n→+∞ ‖ Pn(x0) − E ‖= 0},

from Lemma 2 it follows that

WS(E) ∩ X0 = ∅.

Furthermore, it is easy to check that the orbits in M∂ approaches E2. Finally, the
existence of the region (43) ensures that P has a global attractor, i.e. a positively
invariant set which attracts all the positive orbits in X . This proves that if (29) is
satisfied, all the conditions required by Theorem 1.3.1 (and Remark 1.3.1) in [35] are
satisfied. Therefore, P is uniformly persistent with respect to (X0, ∂X0).

Finally, from Lemma (1), P is compact and point dissipative1; therefore from
Theorem 3.1.1 in [35], it follows that there exists η > 0 such that,

lim inf
t→+∞ d(Q(t)(x0), ∂X0) ≥ η, ∀x0 ∈ X0,

which implies (52). ��

1 We recall that a continuous map T : X → X is said to be point dissipative if there is a bounded set
B ⊂ X with the property that, for any x ∈ X , there is an integer N (x) such that T nx ∈ B for n > N (x)
(see [19]).
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6 Conclusions

In this work, we showed that if the average PHS effort overcomes a given threshold
(roughly speaking, the relative impact of the fear of side effects compared to the fear of
the disease itself), then a highly idealized equilibrium where all people get vaccinated
is globally asymptotically stable. More realistically, it is possible to reach a GAS
equilibrium state where there are no infectious but the fraction of newborns’ parents
who vaccinate their babies is periodically fluctuating. The stability properties of this
disease-free state depend on the whole function γ (t) in a non-trivial manner (or if
one prefers, on its whole Fourier spectrum) and not only on its average value (i.e., the
spectral value at frequency 0).

We also briefly showed that similar properties hold for a wide class of general
time-heterogeneous efforts (also when the contact rate has a generalized tempo-
ral pattern). We equally focused on the opposite side of the impacts of the PHS
intervention, i.e. the very frequent cases where disease elimination is not suc-
cessful — namely, we provided an analytical study of uniform persistence of the
disease.

Acknowledgements The work of BB has been performed under the auspices of the Italian National
Group for the Mathematical Physics (GNFM) of the National Institute for Advanced Mathematics
(INdAM).

A Strong repellers theorem

We recall here the strong repellers theorem, as in [35] (Theorem 1.3.1 and
Remark 1.3.1). Let f : X → X be a continuous map with precompact posi-
tive orbits, and X0 ∪ X an open set. Define ∂X0 := X0 := X\X0, and M∂ :=
{x ∈ ∂X0 : f n(x) ∈ ∂X0, n ≥ 0}.

Now, assume that the following assumptions holds true:

(A1) f (X0) ⊂ X0, and f has a global attractor A;
(A2) There exists a finite sequence M = {M1, . . . , Mk} of disjoint, compact, and

isolated invariant sets in ∂X0 such that:

(i) Ω(M∂ ) := ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi ;
(ii) no subset of M forms a cycle in ∂X0;
(iii) Mi is isolated in X ; and
(iv) Ws(M1) ∩ X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive set L
with L �⊂ Mi , for all 1 ≤ i ≤ k, it follows that inf x∈L d (x, ∂X0) > δ.
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