19 research outputs found

    Biochar composites: Emerging trends, field successes, and sustainability implications

    Get PDF

    Assessing the impact of environmental activities on natural organic matter in South Africa and Belgium

    No full text
    The presence and persistence of natural organic matter (NOM) in drinking water treatment plants (WTPs) requires a robust and rapid monitoring method. Measurement and monitoring of NOM fractions using current technology is time-consuming and expensive. This study uses fluorescence measurements in combination with Parallel Factor (ParaFac) analysis to characterize NOM fractions. This was achieved through: (1) determining the origin and composition of NOM fractions using fluorescence index (FI), humification index, biological index, and freshness index, and (2) using multivariate analysis to reveal key parameters and hidden NOM fraction characteristics influenced by seasonal changes and environmental activities. The ParaFac model revealed that the NOM fractions for Belgium plants are mainly hydrophobic acids, aromatic proteins, biological activity, humic acid-like, and fulvic acid-like moieties. The NOM fractions in South African plants were mainly aromatic protein, humic acid-like, fulvic acid-like, tryptophan-like, and protein-like moieties. For Belgium plants in spring FI >1.7, indicating high microbial sources, whereas FI < 1.3 for South African plants, signifying terrestrial sources of NOM. On the one hand, the first principal component (PC1) interpreted 33.02% of the total variance, and is a measure of fluorescent NOM relative concentration. On the other hand, the PC2 interpreted 21.47% and contains most of the information on humification, freshness, and biological indicators, while PC3 interpreted 17.74% and contains information on the origin and variation in environmental conditions. These results will assist in developing a method for online monitoring of NOM fractions in water sources based on environment activities and spectral measurements

    PARAFAC model as an innovative tool for monitoring natural organic matter removal in water treatment plants

    No full text
    The increase of fluorescent natural organic matter (fNOM) fractions during drinking water treatment might lead to an increased coagulant dose and filter clogging, and can be a precursor for disinfection by-products. Consequently, efficient fNOM removal is essential, for which characterisation of fNOM fractions is crucial. This study aims to develop a robust monitoring tool for assessing fNOM fractions across water treatment processes. To achieve this, water samples were collected from six South African water treatment plants (WTPs) during winter and summer, and two plants in Belgium during spring. The removal of fNOM was monitored by assessing fluorescence excitation–emission matrices datasets using parallel factor analysis. The removal of fNOM during summer for South African WTPs was in the range 69–85%, and decreased to 42–64% in winter. In Belgian WTPs, fNOM removal was in the range 74–78%. Principal component analysis revealed a positive correlation between total fluorescence and total organic carbon (TOC). However, TOC had an insignificant contribution to the factors affecting fNOM removal. Overall, the study demonstrated the appearance of fNOM in the final chlorinated water, indicating that fNOM requires a customised monitoring technique
    corecore