18 research outputs found

    Challenges in Whole Exome Sequencing: An Example from Hereditary Deafness

    Get PDF
    Whole exome sequencing provides unprecedented opportunities to identify causative DNA variants in rare Mendelian disorders. Finding the responsible mutation via traditional methods in families with hearing loss is difficult due to a high degree of genetic heterogeneity. In this study we combined autozygosity mapping and whole exome sequencing in a family with 3 affected children having nonsyndromic hearing loss born to consanguineous parents. Two novel missense homozygous variants, c.508C>A (p.H170N) in GIPC3 and c.1328C>T (p.T443M) in ZNF57, were identified in the same ∌6 Mb autozygous region on chromosome 19 in affected members of the family. Both variants co-segregated with the phenotype and were absent in 335 ethnicity-matched controls. Biallelic GIPC3 mutations have recently been reported to cause autosomal recessive nonsyndromic sensorineural hearing loss. Thus we conclude that the hearing loss in the family described in this report is caused by a novel missense mutation in GIPC3. Identified variant in GIPC3 had a low read depth, which was initially filtered out during the analysis leaving ZNF57 as the only potential causative gene. This study highlights some of the challenges in the analyses of whole exome data in the bid to establish the true causative variant in Mendelian disease

    A canonical splice site mutation in GIPC3 causes sensorineural hearing loss in a large Pakistani family

    No full text
    Item does not contain fulltextWith homozygosity mapping we have identified two large homozygous regions on chromosome 3q13.11-q13.31 and chromosome 19p13.3-q31.32 in a large Pakistani family suffering from autosomal recessive nonsyndromic hearing impairment (arNSHI). The region on chromosome 19 overlaps with the previously described deafness loci DFNB15, DFNB72 and DFNB95. Mutations in GIPC3 have been shown to underlie the nonsyndromic hearing impairment linked to these loci. Sequence analysis of all exons and exon-intron boundaries of GIPC3 revealed a homozygous canonical splice site mutation, c.226-1G>T, in GIPC3. This is the first mutation described in GIPC3 that affects splicing. The c.226-1G>T mutation is located in the acceptor splice site of intron 1 and is predicted to affect the normal splicing of exon 2. With a minigene assay it was shown to result in the use of an alternative acceptor site in exon 2, resulting in a frameshift and a premature stop codon. This study expands the mutational spectrum of GIPC3 in arNSHI
    corecore