891 research outputs found

    Lowering of the Kinetic Energy in Interacting Quantum Systems

    Full text link
    Interactions never lower the ground state kinetic energy of a quantum system. However, at nonzero temperature, where the system occupies a thermal distribution of states, interactions can reduce the kinetic energy below the noninteracting value. This can be demonstrated from a first order weak coupling expansion. Simulations (both variational and restricted path integral Monte Carlo) of the electron gas model and dense hydrogen confirm this and show that in contrast to the ground state case, at nonzero temperature the population of low momentum states can be increased relative to the free Fermi distribution. This effect is not seen in simulations of liquid He-3.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett., June, 200

    An Exact Monte Carlo Method for Continuum Fermion Systems

    Full text link
    We offer a new proposal for the Monte Carlo treatment of many-fermion systems in continuous space. It is based upon Diffusion Monte Carlo with significant modifications: correlated pairs of random walkers that carry opposite signs; different functions ``guide'' walkers of different signs; the Gaussians used for members of a pair are correlated; walkers can cancel so as to conserve their expected future contributions. We report results for free-fermion systems and a fermion fluid with 14 3^3He atoms, where it proves stable and correct. Its computational complexity grows with particle number, but slowly enough to make interesting physics within reach of contemporary computers.Comment: latex source, 3 separated figures (2 in jpg format, 1 in eps format

    The Coupled Electronic-Ionic Monte Carlo Simulation Method

    Get PDF
    Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accurate and general methods for computing total electronic energies. We will review methods we have developed to perform QMC for the electrons coupled to a classical Monte Carlo simulation of the ions. In this method, one estimates the Born-Oppenheimer energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the energy is used in a Metropolis simulation of the ionic degrees of freedom. Important aspects of this method are how to deal with the noise, which QMC method and which trial function to use, how to deal with generalized boundary conditions on the wave function so as to reduce the finite size effects. We discuss some advantages of the CEIMC method concerning how the quantum effects of the ionic degrees of freedom can be included and how the boundary conditions can be integrated over. Using these methods, we have performed simulations of liquid H2 and metallic H on a parallel computer.Comment: 27 pages, 10 figure

    Proof for an upper bound in fixed-node Monte Carlo for lattice fermions

    Get PDF
    We justify a recently proposed prescription for performing Green Function Monte Carlo calculations on systems of lattice fermions, by which one is able to avoid the sign problem. We generalize the prescription such that it can also be used for problems with hopping terms of different signs. We prove that the effective Hamiltonian, used in this method, leads to an upper bound for the ground-state energy of the real Hamiltonian, and we illustrate the effectiveness of the method on small systems.Comment: 14 pages in revtex v3.0, no figure

    Correlations in Hot Dense Helium

    Full text link
    Hot dense helium is studied with first-principles computer simulations. By combining path integral Monte Carlo and density functional molecular dynamics, a large temperature and density interval ranging from 1000 to 1000000 K and 0.4 to 5.4 g/cc becomes accessible to first-principles simulations and the changes in the structure of dense hot fluids can be investigated. The focus of this article are pair correlation functions between nuclei, between electrons, and between electrons and nuclei. The density and temperature dependence of these correlation functions is analyzed in order to describe the structure of the dense fluid helium at extreme conditions.Comment: accepted for publication in Journal of Physics

    Quantum Monte Carlo study of a positron in an electron gas

    Get PDF
    Quantum Monte Carlo calculations of the relaxation energy, pair-correlation function, and annihilating-pair momentum density are presented for a positron immersed in a homogeneous electron gas. We find smaller relaxation energies and contact pair-correlation functions in the important low-density regime than predicted by earlier studies. Our annihilating-pair momentum densities have almost zero weight above the Fermi momentum due to the cancellation of electron-electron and electron-positron correlation effects

    Nuclear quantum effects in water

    Full text link
    In this work, a path integral Car-Parrinello molecular dynamics simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path integral molecular dynamics methodology. It is shown that these results are in good agreement with neutron Compton scattering data for liquid water and ice.Comment: 4 page

    The Coupled Electron-Ion Monte Carlo Method

    Full text link
    In these Lecture Notes we review the principles of the Coupled Electron-Ion Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of Solid State Physics, 34th course: "Computer Simulation in Condensed Matter: from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To appear in Lecture Notes in Physics (2006

    Twist-averaged Boundary Conditions in Continuum Quantum Monte Carlo

    Full text link
    We develop and test Quantum Monte Carlo algorithms which use a``twist'' or a phase in the wave function for fermions in periodic boundary conditions. For metallic systems, averaging over the twist results in faster convergence to the thermodynamic limit than periodic boundary conditions for properties involving the kinetic energy with the same computational complexity. We determine exponents for the rate of convergence to the thermodynamic limit for the components of the energy of coulomb systems. We show results with twist averaged variational Monte Carlo on free particles, the Stoner model and the electron gas using Hartree-Fock, Slater-Jastrow, three-body and backflow wavefunction. We also discuss the use of twist averaging in the grand canonical ensemble, and numerical methods to accomplish the twist averaging.Comment: 8 figures, 12 page

    Single and Paired Point Defects in a 2D Wigner Crystal

    Full text link
    Using the path-integral Monte Carlo method, we calculate the energy to form single and pair vacancies and interstitials in a two-dimensional Wigner crystal of electrons. We confirm that the lowest-lying energy defects of a 2D electron Wigner crystal are interstitials, with a creation energy roughly 2/3 that of a vacancy. The formation energy of the defects goes to zero near melting, suggesting that point defects might mediate the melting process. In addition, we find that the interaction between defects is strongly attractive, so that most defects will exist as bound pairs.Comment: 4 pages, 5 encapsulated figure
    • …
    corecore