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Quantum Monte Carlo calculations of the relaxation energy, pair-correlation function, and annihilating-

pair momentum density are presented for a positron immersed in a homogeneous electron gas. We find

smaller relaxation energies and contact pair-correlation functions in the important low-density regime

than predicted by earlier studies. Our annihilating-pair momentum densities have almost zero weight

above the Fermi momentum due to the cancellation of electron-electron and electron-positron correlation

effects.
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Electron-positron annihilation underlies both medical
imaging with positron emission tomography (PET) and
studies of materials using positron annihilation spectros-
copy (PAS) [1]. Positrons entering a material rapidly ther-
malize and the majority annihilate with opposite-spin
electrons to yield pairs of photons at energies close to
0.511 MeV. In a PET scan, positrons are emitted by radio-
nuclides in biologically active tracer molecules and the
resulting annihilation radiation is measured to image the
tracer concentration. The interaction of low-energy posi-
trons with molecules is therefore of substantial experimen-
tal and theoretical interest [2]. PAS is used to investigate
microstructures in metals, alloys, semiconductors, insula-
tors [1], polymers [3], and nanoporous materials [4].
Positrons are repelled by the positively charged nuclei
and tend to become trapped in voids within the material.
The positron lifetime is measured as the interval between
the detection of a photon emitted in the �þ radioactive
decay that produces the positron and the detection of the
annihilation radiation [1]. The lifetime is characteristic of
the region in which the positron settles, and PAS is a
sensitive, nondestructive technique for characterizing the
size, location, and concentration of voids in materials.
Measuring the Doppler broadening of the annihilation
radiation or the angular correlation between the two
0.511 MeV photons yields information about the momen-
tum density (MD) of the electrons in the presence of the
positron. These techniques may be used to investigate the
Fermi surfaces of metals [5].

The aim of PAS experiments is to investigate a host
material without the changes induced by the positron.
The positron is, however, an invasive probe which polar-
izes the electronic states of the material. Disentangling the

properties of the host from the changes induced by the
positron is a major theoretical challenge. Positrons in con-
densed matter may be modeled with two-component den-
sity functional theory (DFT) [6], in which the correlations
are described by a functional of the electron and positron
density components. Within the local density approxima-
tion (LDA), this functional is obtained from the difference
�� between the energy of a homogeneous electron gas
(HEG) with and without an immersed positron. �� is
known as the relaxation energy, and is equal to the
electron-positron correlation energy.
Two-component DFT gives reasonable electron and

positron densities, but the DFT orbitals do not describe
electron-positron correlation properly [6,7]. The electron-
positron pair-correlation function (PCF) gðrÞ and the
annihilating-pair momentum density (APMD) �ð �pÞ con-
structed from the DFT orbitals are therefore poor. The
contact PCF gð0Þ is particularly important because it de-
termines the annihilation rate � ¼ 3gð0Þ=ð4c3r3sÞ [1] for a
positron immersed in a paramagnetic HEG, where rs is the
electron density parameter and c is the speed of light
in vacuo [8]. If the electron and positron motions were
uncorrelated gð0Þwould be unity, but the strong correlation
leads to much larger values, particularly at low densities,
where an electron-positron bound state (positronium or Ps)
or even an electron-electron-positron bound state (Ps�)
may be formed.
We have used the variational and diffusion quantum

Monte Carlo (VMC and DMC) methods [9,10] as imple-
mented in the CASINO code [11] to study a single positron
in a HEG. Fermionic antisymmetry is imposed via the
fixed-node approximation, in which the nodal surface is
constrained to equal that of a trial wave function. We used
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Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB) trial
wave functions [12,13]. The latter go beyond the single-
particle SJ nodal surface by replacing the particle coordi-
nates in the Slater determinants by ‘‘quasiparticle coordi-
nates.’’ SJB wave functions give the highest accuracy
obtained to date for the HEG [12,13]. We also tested two
types of orbitals: (i) plane-wave orbitals for each particle
and (ii) orbitals which describe the pairing between the
electrons and positron. The pairing orbitals were obtained
from mean-field calculations performed in the reference
frame of the positron, so the orbitals are functions of the
separation of an electron and the positron [14]. Within this
impurity-frame DFT (IF-DFT) method, the pairing orbitals
describe the electron-positron correlation quite well on
their own [14] and give a different nodal surface from the
plane-wave orbitals. (NB, our quantum Monte Carlo cal-
culations were performed in the laboratory frame.) The
four wave-function forms used are

�SJ
PW ¼ eJðRÞ½eiki�r" �½eikj�r# �;

�SJB
PW ¼ eJðRÞ½eiki�ðr"þ�ðRÞÞ�½eikj�ðr#þ�ðRÞÞ�;

�SJ
pair ¼ eJðRÞ½�iðr" � rpÞ�½�jðr# � rpÞ�;

�SJB
pair ¼ eJðRÞ½�iðr" � rp þ �ðRÞÞ�½�jðr# � rp þ �ðRÞÞ�;

(1)

whereR denotes the positions of all the particles, r" and r#
denote the positions of up- and down-spin electrons, re-
spectively, rp is the positron position, and ½� � �� denotes a
Slater determinant. The Jastrow exponent JðRÞ [15] and
the backflow displacement �ðRÞ [13] contain parameters
that were optimized separately for each wave function and
system. The Jastrow exponents were first optimized using
the efficient VMC variance-minimization scheme of
Ref. [16], and then all the parameters (including the back-
flow parameters) were optimized together using the VMC
energy-minimization scheme of Ref. [17]. The pairing
orbitals f�ig were represented using B-spline functions
on a real-space grid [18]. The electron-positron cusp con-
dition was enforced on the pairing orbitals for wave func-
tion �SJ

pair [19,20]; for the other three wave functions, the

cusp conditions were imposed via the Jastrow factor. In all
our calculations the simulation-cell Bloch vector [21] was
chosen to be ks ¼ 0.

Tests at high (rs ¼ 1) and low (rs ¼ 8) electron den-
sities show that the qualitative features of the variations in
��, gðrÞ, and �ð �pÞ with rs are the same for each of the
wave functions of Eq. (1). However, as shown in the
Supplemental Material [22], we obtained lower VMC
and DMC energies with the SJB wave functions (�SJB

PW

and �SJB
pair) than the SJ ones (�SJ

PW and �SJ
pair), and therefore

we used SJB wave functions to obtain all our main results.
The pairing orbitals give lower SJB-VMC energies than the
plane-wave orbitals, but the SJB-DMC energies with the
plane-wave and pairing orbitals are almost identical

[the same to within error bars at rs ¼ 8, and differing by
only 0.0013(5) a.u. at rs ¼ 1 with 54 electrons]. The lack
of sensitivity to the orbitals used, and hence the nodal
surface, suggests that the DMC energies are highly accu-
rate. The energies reported in this Letter are from DMC
calculations using wave function �SJB

PW . Such calculations
are considerably less expensive than calculations using
�SJB

pair due to (i) the lower energy variance achieved with

�SJB
PW [22] and (ii) the fact that plane-wave orbitals are

cheaper to evaluate. The DMC energies were extrapolated
to zero time step. Our production DMC calculations were
performed in cells containing N ¼ 54 electrons. Tests of
convergence with respect to system size up to N ¼ 114
electrons are described in the Supplemental Material [22].
The cell volumewas chosen to be ðN � 1Þð4=3Þ�r3s , so that
the electron density far from the positron was correct. IF-
DFT calculations [14] suggest that finite-size effects due to
the interaction of images of the positron are negligible for
N � 54 electrons. The uncertainty in the DMC relaxation
energy due to finite-size errors ranges from about
�0:01 a:u: at rs ¼ 1 to �0:003 a:u: at rs ¼ 8. At low
density the estimated finite-size errors in our data are an
order of magnitude smaller than the difference of about
0.04 a.u. between our SJB-DMC data and the Boroński-
Nieminen result [6].
Our DMC relaxation energies are plotted in Fig. 1 and

are well fitted by the form

��ðrsÞ ¼ A�1r
�1
s þ A0 þ A1rs � 0:262 005B2r

2
s

1þ B1rs þ B2r
2
s

; (2)

where A�1 ¼ �0:260 361, A0 ¼ �0:261 762, A1 ¼
0:003 755 34, B1 ¼ 0:113 718, and B2 ¼ 0:027 091 2.
Equation (2) tends to the correct low-density limit of the
energy of the Ps� ion [23]. Equation (2) does not yield the
exact high-density behavior of the random phase approxi-
mation (RPA), although this is only relevant for rs < 0:1
[24]. VMC energies for a positron in a HEG have been
reported previously [25], but we have used superior trial
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FIG. 1 (color online). Relaxation energy against density pa-
rameter from our SJB-DMC calculations and other studies
[14,26,28,34,35], relative to the Boroński-Nieminen expression,
��BN [6] (horizontal dashed line).
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wave functions and have obtained very different results. At
high densities our relaxation energies are similar to those
of Lantto [26], but at lower densities we obtain smaller
values. The SJB-DMC and IF-DFT results [14] and the
data of Ref. [27] show similar behavior with rs, while the
Boroński-Nieminen fit [6] to the data of Ref. [28] is
markedly different. The Boroński-Nieminen [6] expression
for ��ðrsÞ is widely used in two-component DFT calcu-
lations, but our study suggests it is not very accurate and
should be replaced by Eq. (2).

We calculated the APMD using the VMC method with
an optimized SJB trial wave function with pairing orbitals
(�SJB

pair), because these give lower VMC energies than

plane-wave orbitals (�SJB
PW ). These calculations were per-

formed by constraining an electron and the positron to lie
on top of one another throughout the simulation [22].
APMDs at different densities are plotted in Fig. 2, with
the normalization chosen such that

R1
0 4� �p2�ð �pÞd �p ¼

ð4=3Þ�k3F. Our results clearly show the enhancement of
the APMD below the Fermi momentum predicted by
Kahana [29], but our data differ quantitatively from pre-
vious results [14,27,29]. Our VMC data have almost no

weight above the Fermi momentum over the entire density
range studied, even though the weight in the MD above kF
in the HEG is substantial at low densities. For example, we
find that the APMD immediately above kF is roughly 10%
of the value for the HEG at rs ¼ 1 and 3% at rs ¼ 8.
Suppression of the weight in the APMD above kF was

demonstrated theoretically by Carbotte and Kahana [30],
but our study gives a more detailed and accurate picture.
We investigated the weight above kF using VMC calcula-
tions with the wave function �SJB

PW by selectively eliminat-
ing interparticle correlations. Neglecting electron-electron
and electron-positron correlations gives the familiar ‘‘top
hat’’ MD of the noninteracting system. Calculations with
the electron-positron terms removed give an APMD indis-
tinguishable from the MD of the HEG, with a tail above kF.
Calculations including electron-positron correlation but
neglecting electron-electron correlation show Kahana en-
hancement below kF and a tail above kF. When, however,
both electron-electron and electron-positron correlations
are included, the tail above kF is largely suppressed, as
shown in the lower panel of Fig. 2.
The suppression of the tail in the APMD can be ex-

plained by examining the behavior of the two-body terms
in the Jastrow exponent. (For simplicity, we consider the
�SJ

PW wave function in the following discussion.) The
Jastrow exponent JðRÞ is the sum of electron-electron
[u""ðrÞ and u"#ðrÞ, where the arrows indicate spins] and

electron-positron [uepðrÞ] terms. If one assumes that

u"#ðrÞ ¼ u""ðrÞ ¼ �uepðrÞ; (3)

then the APMD has exactly zero weight above kF, as
shown in the Supplemental Material [22]. The RPA (linear
response theory) shows that Eq. (3) holds at large r and the
Kato cusp conditions force the gradients of u"#ðrÞ and

uepðrÞ to satisfy Eq. (3) at r ¼ 0. The cusp conditions for

parallel and antiparallel spin electrons are different and
therefore u"#ðrÞ and u""ðrÞ must differ at small r, but anti-
symmetry ensures that the probability of parallel-spin
electrons being closer than rs is small. As shown in the
Supplemental Material [22], plots of the terms in the
Jastrow exponent demonstrate the approximate validity
of Eq. (3).
We calculated the PCFs within VMC and DMC using

�SJB
PW wave functions, because these give almost identical

results to pairing orbitals, but the calculations are much
cheaper [22]. The final results were evaluated by extrapo-
lated estimation (twice the DMC PCF minus the VMC
PCF) [31], in order to eliminate the leading-order errors.
In Fig. 3, the electron-positron contact PCF gð0Þ is plotted
relative to the Boroński-Nieminen form [6]. Our contact
PCF data are well represented by

gð0Þ ¼ 1þ 1:23rs þ a3=2r
3=2
s þ a2r

2
s þ a7=3r

7=3
s

þ a8=3r
8=3
s þ 0:173 694r3s ; (4)
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FIG. 2 (color online). Top: APMDs [�ð �pÞ] for different den-
sities. The solid lines show our VMC data obtained with wave
function �SJB

pair and N ¼ 114 electrons, while the dashed and

dash-dotted lines show the data of Kahana [29] and Stachowiak
[27], respectively. Bottom: APMDs for the positron in HEG and
the HEG at rs ¼ 8 and N ¼ 54 electrons, calculated using�SJB

PW .
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where a3=2 ¼ �3:382 08, a2 ¼ 8:6957, a7=3 ¼ �7:370 37,

and a8=3 ¼ 1:756 48. Equation (4) satisfies the high-

density (RPA) [24] and low-density (Ps�) limiting behav-
iors [23]. The Ps� limit appears to be approached slowly.
Our full data for gðrÞ are given in the Supplemental
Material [22]. The IF-DFT data follow the extrapolated
SJB data quite well, while the other many-body calcula-
tions give somewhat larger values of gðrÞ at low densities.
In the density range rs ¼ 5–8 a:u:, our values of gð0Þ are
approximately 9% smaller than those given by the
Boroński-Nieminen expression [6]. The local increase of
the electron density around the positron caused by their
mutual attraction is modeled in two-component DFT using
an ‘‘enhancement factor’’ based on data for gð0Þ. Using our
smaller values of gð0Þ would reduce the enhancement
factor and hence the overestimation of annihilation rates
obtained with the positronic LDA [32].

In conclusion, our results are the most accurate obtained
so far for a positron in a HEG. Our data for �� are
sufficient to define the energy functional for a two-
component positronic DFT within the LDA. They would
also be useful in developing semilocal [33] or other func-
tionals. Our PCF data give a smaller enhancement factor
than the standard Boroński-Nieminen expression [6]. Two-
component DFT, using our electron-positron correlation
functional and enhancement factor, could be used to pre-
dict the annihilation rate of low densities of positrons at
defects in real materials, to aid the interpretation of PAS
experiments, although such calculations may be compli-
cated by the need to describe orthopositronium formation.
Our APMDs have very little weight above kF because of
the cancellation of electron-electron and electron-positron
correlation effects. We have derived an exact result relating
Eq. (3) to the complete absence of weight in the APMD
�ð �pÞ for �p > kF.
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