907 research outputs found

    Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish

    Get PDF
    Having one and only one centromere per chromosome is essential for proper chromosome segregation during both mitosis and meiosis. Chromosomes containing two centromeres are known as dicentric and often mis-segregate during cell division, resulting in aneuploidy or chromosome breakage. Dicentric chromosome can be stabilized by centromere inactivation, a process which reestablishes monocentric chromosomes. However, little is known about this process in naturally occurring dicentric chromosomes. Using a combination of fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on metaphase chromosome spreads, we demonstrate that centromere inactivation has evolved on a neo-Y chromosome fusion in the Japan Sea threespine stickleback fish (Gasterosteus nipponicus). We found that the centromere derived from the ancestral Y chromosome has been inactivated. Our data further suggest that there have been genetic changes to this centromere in the two million years since the formation of the neo-Y chromosome, but it remains unclear whether these genetic changes are a cause or consequence of centromere inactivation

    Behavioural Salinity Preferences of Juvenile Green Sturgeon \u3ci\u3eAcipenser medirostris\u3c/i\u3e Acclimated to Fresh Water and Full-Strength Salt Water

    Get PDF
    To quantify the salinity preference of juvenile green sturgeon Acipenser medirostris, two groups of A. medirostris [140 days post hatch (dph); total length (LT) 38.0–52.5 cm] were acclimated to either near fresh water (mean ± S.E. salinity = 3.2 ± 0.6) or full-strength salt water (34.1 ± 1.2) over 8 weeks. Following acclimation, the two groups were divided into experimental and control groups, where experimental A. medirostris from both freshwater and saltwater acclimations were individually introduced (200–220 dph) into a rectangular salinity-preference flume (maximum salinity gradient: 5–33). Control A. medirostris were presented with only their acclimation water (fresh water or salt water) on both sides of the flume. It was demonstrated that A. medirostris acclimated to both salt water and fresh water spent a significantly greater amount of time on the side of the testing area with the highest salinity concentration (P \u3c 0.05 and P \u3c 0.001, respectively) while control A. medirostris spent an equal amount of time on each side of the flume. These findings indicate that juvenile A. medirostris are not only capable of detecting salt water within the first year of their lives but perhaps are actively seeking out saline environments as they move through a watershed. Establishing A. medirostris salinity preferences provides a better understanding of the early life history of this threatened species, shedding light on possible outmigration timing

    Aging and Endothelial Progenitor Cell Telomere Length in Healthy Men

    Get PDF
    BACKGROUND: Telomere length declines with age in mature endothelial cells and is thought to contribute to endothelial dysfunction and atherogenesis. Bone marrow-derived circulating endothelial progenitor cells (EPCs) are critical to vascular health as they contribute to both reendothelialization and neovascularization. We tested the hypothesis that EPC telomere length decreases with age in healthy adult humans.METHODS: Peripheral blood samples were collected from 40 healthy, non-obese, sedentary men: 12 young (age 21-34 years), 12 middle-aged (43-55 years) and 16 older (57-68 years). Putative EPCs were isolated from peripheral blood mononuclear cells and telomere length was determined using genomic DNA preparation and Southern hybridization techniques.RESULTS: EPC telomere length (base pairs) was approximately 20% (p=0.01) lower in the older (8492+523 bp) compared to the middle-aged (10,565+572 bp) and young (10,205+501 bp) men. Of note, there was no difference in EPC telomere length between the middle-aged and young men.CONCLUSIONS: These results demonstrate that EPC telomere length declines with age in healthy, sedentary men. Interestingly, telomere length was well preserved in the middle-aged compared to young men, suggesting that EPC telomere shortening occurs after the age of 55 years

    Aging and Endothelial Progenitor Cell Telomere Length in Healthy Men

    Get PDF
    BACKGROUND: Telomere length declines with age in mature endothelial cells and is thought to contribute to endothelial dysfunction and atherogenesis. Bone marrow-derived circulating endothelial progenitor cells (EPCs) are critical to vascular health as they contribute to both reendothelialization and neovascularization. We tested the hypothesis that EPC telomere length decreases with age in healthy adult humans. METHODS: Peripheral blood samples were collected from 40 healthy, non-obese, sedentary men: 12 young (age 21-34 years), 12 middle-aged (43-55 years) and 16 older (57-68 years). Putative EPCs were isolated from peripheral blood mononuclear cells and telomere length was determined using genomic DNA preparation and Southern hybridization techniques. RESULTS: EPC telomere length (base pairs) was approximately 20% (p=0.01) lower in the older (8492+523 bp) compared to the middle-aged (10,565+572 bp) and young (10,205+501 bp) men. Of note, there was no difference in EPC telomere length between the middle-aged and young men. CONCLUSIONS: These results demonstrate that EPC telomere length declines with age in healthy, sedentary men. Interestingly, telomere length was well preserved in the middle-aged compared to young men, suggesting that EPC telomere shortening occurs after the age of 55 years

    The instability of Alexander-McTague crystals and its implication for nucleation

    Full text link
    We show that the argument of Alexander and McTague, that the bcc crystalline structure is favored in those crystallization processes where the first order character is not too pronounced, is not correct. We find that any solution that satisfies the Alexander-McTague condition is not stable. We investigate the implication of this result for nucleation near the pseudo- spinodal in near-meanfield systems.Comment: 20 pages, 0 figures, submitted to Physical Review

    Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the <it>Pa</it>SSU intron in the rRNA small subunit gene of <it>Phialophora americana </it>isolate Wang 1046 is capable of <it>in vitro </it>splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme.</p> <p>Findings</p> <p>Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of <it>Phialophora </it>isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of <it>Phialophora</it>, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, <it>Porpidia crustulata </it>and <it>Arthonia lapidicola</it>.</p> <p>Conclusions</p> <p>The small putative group I introns in <it>Phialophora </it>have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses.</p

    Self-guided trails – a route to more responsible tourism?

    Get PDF
    In recent years, the tourism industry has faced criticism by turning its attention to the development of more responsible tourism. This is a form of tourism that is mindful of the diverse needs of host communities, local business and the visitor. This paper investigates the development of more responsible tourism from the perspective of a popular tourist product – the self-guided trail or route. The trail or route provides a themed and interpreted journey through the urban or rural landscape, creating links between sites, attractions and other tourism businesses by providing information and storytelling along the way. These products have a global appeal and are becoming more prolific. Through a literature review on trails, the paper analyses their key characteristics and the rationales of developers and concludes that trails have the potential to contribute to more responsible tourism development. The paper proposes a series of planning principles which are derived from the literature and examples of good practice therein which may assist trail developers in creating more responsible tourism routes and trails. The discussion concludes with a case study of a project in Cornwall in the south-west of the UK, where responsible planning has underpinned recent trail development
    • …
    corecore