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AGING AND ENDOTHELIAL PROGENITOR CELL TELOMERE
LENGTH IN HEALTHY MEN

Erich Kushner1, Gary P. Van Guilder1, Owen J. MacEneaney1, Jennifer N. Cech1, Brian L.
Stauffer1,2,3, and Christopher A. DeSouza1,2

1Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado,
Boulder, Colorado

2Department of Medicine, University of Colorado at Denver, Denver, Colorado

3Denver Health Medical Center, Denver, Colorado

Abstract
Background—Telomere length declines with age in mature endothelial cells and is thought to
contribute to endothelial dysfunction and atherogenesis. Bone marrow-derived circulating
endothelial progenitor cells (EPCs) are critical to vascular health as they contribute to both
reendothelialization and neovascularization. We tested the hypothesis that EPC telomere length
decreases with age in healthy adult humans.

Methods—Peripheral blood samples were collected from 40 healthy, non-obese, sedentary men:
12 young (age 21–34 yrs), 12 middle-aged (43–55 yrs) and 16 older (57–68 yrs). Putative EPCs were
isolated from peripheral blood mononuclear cells and telomere length was determined using genomic
DNA preparation and Southern hybridization techniques.

Results—EPC telomere length (mean base pairs) was ~20% (P=0.01) lower in the older (8492±523
bp) compared with the middle-aged (10565±572 bp) and young (10205±501 bp) men. Of note, there
was no difference in EPC telomere length between the middle-aged and young men.

Conclusions—These results demonstrate that EPC telomere length declines with age in healthy,
sedentary men. Interestingly, telomere length was well preserved in the middle-aged compared with
young men, suggesting that EPC telomere shortening occurs after the age of 55 years.

Keywords
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Telomeres are repetitive DNA sequences located at the ends of chromosomes. Their role is to
prevent the recognition of chromosomal ends as double stranded breaks and to protect
chromosomes from end-to-end fusion and degradation. Gradual telomere shortening occurs
with cell replication. However, accelerated telomere attrition results in altered cellular function,
increased senescence and reduced survival (1,2). Clinically, telomere shortening in mature
endothelial cells as well as white blood cells has been linked to the pathogenesis of
atherosclerosis (3,4). Bone marrow-derived circulating endothelial progenitor cells (EPCs)
play an vital role in protecting and regenerating the vascular endothelium through their ability
to contribute to reendothelialization and neovascularization processes at site of endothelial
damage (5). EPC telomere length has been shown to be shorter in patients with coronary artery
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disease compared with healthy adults of similar age, potentially contributing to disease risk
and burden (6). Ageing is associated with numerical and functional impairment of EPCs which
has been linked with endothelial dysfunction, accelerated atherosclerotic disease progression
and elevated rates of cardiovascular events (7–9). It has been postulated that telomere attrition
may be a factor in age-related EPC dysfunction (10). Currently, however, there are no data
regarding the influence of primary ageing on EPC telomere length. Accordingly, we tested the
hypothesis that EPC telomere length declines with age in healthy adult humans.

Peripheral blood samples were collected from 40 healthy sedentary men across the adult age-
range: 12 young (range: 18–35 years), 12 middle-aged (range: 36–55 years) and 16 older
(range: 56–75 years). All subjects were non-obese (BMI ≤ 30.0 kg/m2 and waist circumference
<102 cm), normotensive (BP <140/90), normoglycemic (fasting blood glucose <6.1 mmol/L),
nonsmokers, nonmedicated and free of overt cardiovascular, metabolic and hematologic
disease. All subjects had the research study and its potential risks and benefits explained fully
before providing written informed consent according to the guidelines of the University of
Colorado at Boulder.

Peripheral blood mononuclear cells (PBMNCs) were isolated by ficoll density-gradient
centrifugation and plated on human fibronectin coated plates for 48 hours at 37°C as previously
described (7). Thereafter, non-adherent cells were removed for DNA extraction. Endothelial
phenotype of theses cells was confirmed by immunofluorescent staining for the uptake of DiL-
ac-LDL and expression of VE-cadherin, von Willebrand factor, CD31, and vascular endothelial
growth factor receptor-2 (VEGFR-2) (11–13). In addition, fluorescent-activated cell sorting
analysis utilizing endothelial-specific antibodies recognizing cell surface expression of
VEGFR-2, CD34, and CD133 (14), was performed in selected samples.

Telomere length of these putative EPCs was determined as described by Middleman and
colleagues (15) with minor modifications. Fifteen micrograms of DNA was digested with Hinf
I (10U) and Rsa I (10U) at 37°C for 2 hours. The DNA digests were separated on a 0.8%
agarose gel overnight. Subsequently, the gel was depurinated with 0.25M HCL, denatured for
30 minutes with 0.5M NaOH/1.5M NaCl and neutralized with a 0.5M Tris-HCL pH 8/1.5M
NaCl. DNA was then transferred to a positive charged nylon membrane, UV cross-linked, and
hybridized with a 32P-end-labeled (CCCTAA)3CCC oligonucleotide using Church buffer at
50° overnight. Following hybridization, membranes were washed and exposed to a phosphor-
screen for 48 hours. Autoradiographs were scanned on a Typhoon-Trio Imaging system for
analysis. Mean EPC telomere length was determined using ImageQuant 5.0 software.

Group differences across the age classifications (young, middle-aged, older) were determined
by analysis of variance. When indicated by a significant main effect, post hoc comparisons
between the groups using the Newman-Keuls method was performed to identify specific age-
group differences. Relations between variables of interest were assessed by linear and stepwise
regression analysis. All values are expressed as mean ± SEM. Statistical significance was set
at P < 0.05.

Subject characteristics are displayed in the table. The middle-aged and older men demonstrated
higher percent body fat and waist circumference compared with young men. Although within
clinically normal ranges, systolic blood pressure, plasma concentrations of total cholesterol
and low-density lipoprotein cholesterol were significantly higher in older men compared with
both the middle-aged and young men. In addition, plasma glucose and oxidized low-density
lipoprotein (ox-LDL) were highest in the middle-aged and older men.

Mean EPC telomere length (base pairs) among the groups is shown in the Figure. EPC telomere
length was ~20% (P=0.01) shorter in the older (8493±523 bp) compared with middle-aged
(10565±572 bp) and young (10205±501 bp) men. Of note, there were no differences in EPC
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telomere length between the middle-aged and young men. In the overall study population,
significant (all P<0.05) univariate correlations were observed with age (r = −0.36), BMI (r =
−0.39), percent body fat (r = −0.35), and systolic blood pressure (r = −0.46). Stepwise
regression analysis identified systolic blood pressure (R2 = 0.22) as the primary determinant
of EPC telomere length.

Because systolic blood pressure was highest in the older men and was the primary determinant
of EPC telomere length, we compared subgroups of young (n = 8; 119/72 mmHg), middle-
aged (n = 8; 116/76 mmHg) and older (n = 8; 121/78 mmHg) subjects with similar systolic
blood pressure to address this potential confound. Analogous to the overall population, EPC
telomere length was ~22% shorter (P=0.01) in the older (7950±597 bp) compared with middle-
aged (10232±437 bp) and young (10318±513 bp) men with similar systolic blood pressure.
There was no significant difference in telomere length between the middle-aged and young
groups.

The seminal findings of the present study are: 1) telomere length of circulating EPCs decline
with age in healthy sedentary men; and 2) the onset of decline appears to be after the age of
55 years. To our knowledge this is the first study to demonstrate an age-related reduction in
EPC telomere length in adult humans. Our results extend previous findings demonstrating
shortened EPC telomere length with age in other cell types including leukocytes (16) and
mature endothelial cells (17) to include circulating progenitor cells.

Numerical and functional impairment of circulating EPCs with age has been attributed to a
number of factors including: exhaustion of the pool of stem/progenitor cells in the bone marrow
due to chronic vascular injury; reduced mobilization; diminished migratory and adhesion
capacity; and dysregulation of EPC differentiation (18). In addition, telomere shortening is
thought be a factor underlying aberrant EPC function with ageing (10). Telomere length may
reach a critical threshold resulting in disruption of chromosomal integrity and genomic stability
of the ageing cell (19). This, in turn, may trigger a cascade of events that induces cell-cycle
arrest, proliferative senescence, and increased apoptotic susceptibility, all of which may lead
to a progressive loss in the ability of cells to replicate and function (20).

In the present study, EPC telomere length was significantly shorter (~20%) in older compared
with middle-aged and young men providing initial support for the postulate that EPC telomere
attrition may contribute to age-related EPC dysfunction. Interestingly, however, EPC telomere
shortening does not appear to commence until after the fifth decade of life. EPC telomere length
was similar in the middle-aged compared with young men, with both groups demonstrating
longer telomeres than the older men. The mechanisms responsible for the reduction in EPC
telomere length in men after the age of 55 years are not clear. Although, we studied highly
screened clinically healthy men across the adult age range who were non-medicated and free
of cardiometabolic diseases, we cannot exclude the possibility that moderate increases in body
fatness, blood pressure, metabolic parameters and oxidative stress that commonly occur with
advancing age may cumulatively contribute to telomere shortening (21). Moreover, the fact
that our subjects were sedentary should not be ignored. Recently, it has been reported that
physical inactivity is associated with accelerated telomere attrition in older adult (22).

A number of experimental considerations regarding the present study should be mentioned.
Firstly, as with all cross-sectional experimental designs, we cannot ignore the possibility that
genetic and/or lifestyle behaviors influenced the results of our study. We attempted to minimize
potential lifestyle influences, however, by studying healthy men across the adult age range who
were non-medicated, nonsmokers, and not habitually physically active. Secondly, our study
pertains only to men, limiting the generalizability of our results. Estrogen has been shown to
affect both circulating EPC number and function (23) and previous studies have shown, in a
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variety of cell types, that women exhibit less age-dependent telomere erosion than men (24).
Thus, the onset and magnitude of decline in EPC telomere length observed in men may differ
in women. Thirdly, there are currently no clear consensus criteria for isolating EPCs. It has
been recently suggested that peripheral blood mononuclear cells should be cultured for at least
2 weeks to yield true EPCs (25). However, a potential limitation to this approach is phenotypic
drift resulting from targeted cell differentiation induced by endothelial-specific culture
conditions (26,27); this, in turn, may yield a cellular phenotype that may not be representative
of that occurring in vivo. Moreover, there are no clinical outcomes data demonstrating that the
behavior of these cells following long term culture (>2 weeks) predict any clinical
phenomenon. In the present study, we used a well-established panel of endothelial lineage
markers for putative EPC characterization in cells whose function in vitro has been associated
with cardiovascular risk factors and are predictive of clinical events (7–9).

In conclusion, aging is associated with shortened telomere length of circulating EPCs in healthy
men. Interestingly, the onset of the decline in telomere length appears to occur after middle
age (> 55 years). Future studies are needed to determine whether the reduction in telomere
length contributes mechanistically to EPC dysfunction in older adults.

Acknowledgments
We would like to thank all of the subjects who participated in the study as well as Jared Greiner and Yoli Casas for
their technical assistance and Arthur Zaug for his expert assistance with the telomere length methodology. This study
was supported by National Institutes of Health Awards HL076434, HL077450 and RR00051 as well as American
Heart Association Award 0555678Z.

REFERENCES
1. Edo MD, Andres V. Aging, telomeres, and atherosclerosis. Cardiovasc Res 2005 May 1;66(2):213–

221. [PubMed: 15820190]
2. Artandi SE. Telomeres, telomerase, and human disease. N Engl J Med 2006 Sep 21;355(12):1195–

1197. [PubMed: 16990382]
3. Ogami M, Ikura Y, Ohsawa M, Matsuo T, Kayo S, Yoshimi N, et al. Telomere shortening in human

coronary artery diseases. Arterioscler Thromb Vasc Biol 2004 Mar;24(3):546–550. [PubMed:
14726417]

4. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis.
Lancet 2001 Aug 11;358(9280):472–473. [PubMed: 11513915]

5. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ
Res 2004 Aug 20;95(4):343–353. [PubMed: 15321944]

6. Satoh M, Ishikawa Y, Takahashi Y, Tomonori I, Minami Y, Nakamura M. Association between
oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained
from metabolic syndrome patients with coronary artery disease. Atherosclerosis 2008;198:347–353.
[PubMed: 17983621]

7. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial
progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003 Feb 13;348(7):593–
600. [PubMed: 12584367]

8. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, et al. Circulating endothelial progenitor
cells predict coronary artery disease severity. Am Heart J 2006 Jul;152(1):190–195. [PubMed:
16824855]

9. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor
cells and cardiovascular outcomes. N Engl J Med 2005 Sep 8;353(10):999–1007. [PubMed: 16148285]

10. Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity? J Am
Coll Cardiol 2003 Dec 17;42(12):2081–2082. [PubMed: 14680730]

Kushner et al. Page 4

Clin Chem Lab Med. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



11. Fujii H, Li SH, Szmitko PE, Fedak PW, Verma S. C-reactive protein alters antioxidant defenses and
promotes apoptosis in endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2006 Nov
26;11:2476–2482. [PubMed: 16931792]

12. Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived
from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003 Mar 4;107(8):
1164–1169. [PubMed: 12615796]

13. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, et al. C-reactive protein
attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a
mechanistic link between C-reactive protein and cardiovascular disease. Circulation 2004 May 4;109
(17):2058–2067. [PubMed: 15078802]

14. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and
AC133 by circulating human CD34(+) cells identifies a population of functional endothelial
precursors. Blood 2000 Feb 1;95(3):952–958. [PubMed: 10648408]

15. Middleman EJ, Choi J, Venteicher AS, Cheung P, Artandi SE. Regulation of cellular immortalization
and steady-state levels of the telomerase reverse transcriptase through its carboxy-terminal domain.
Mol Cell Biol 2006 Mar;26(6):2146–2159. [PubMed: 16507993]

16. Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, et al. Telomere
length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular
disease. Aging Cell 2007 Oct;6(5):639–647. [PubMed: 17874998]

17. Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl
Acad Sci U S A 1995 Nov 21;92(24):11190–11194. [PubMed: 7479963]

18. Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link
in atherosclerosis? J Mol Med 2004 Oct;82(10):671–677. [PubMed: 15322703]

19. Shawi MAC. Telomerase, senescence and ageing. Mechanisms of Ageing and Development
2008;129:3–10. [PubMed: 18215413]

20. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007 Oct;3(10):640–649.
[PubMed: 17876321]

21. Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A, et al. Insulin resistance,
oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart
Study. Aging Cell 2006 Aug;5(4):325–330. [PubMed: 16913878]

22. Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, et al. The association
between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 2008 Jan
28;168(2):154–158. [PubMed: 18227361]

23. Strehlow K, Werner N, Berweiler J, Link A, Dirnagl U, Priller J, et al. Estrogen increases bone
marrow-derived endothelial progenitor cell production and diminishes neointima formation.
Circulation 2003 Jun 24;107(24):3059–3065. [PubMed: 12810616]

24. Cherif H, Tarry JL, Ozanne SE, Hales CN. Ageing and telomeres: a study into organ- and gender-
specific telomere shortening. Nucleic Acids Res 2003 Mar 1;31(5):1576–1583. [PubMed: 12595567]

25. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial
progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 2008 Apr;197(2):496–
503. [PubMed: 18249408]

26. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, et al. Mesenchymal
stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004;22(3):377–384.
[PubMed: 15153614]

27. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, et al. Plasticity of human
adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation
2004 Feb 10;109(5):656–663. [PubMed: 14734516]

Kushner et al. Page 5

Clin Chem Lab Med. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure.
EPC telomere length (bp) in young, middle-aged and older men. Values are means ± SEM; *P
=0.01 vs. young and middle-aged.
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Table
Selected subject characteristics

Variable Young
(n=12)

Middle-aged
(n=12)

Older
(n=16)

Age, yr 26±1 48±1* 62±1*†

Body mass, kg 76.1±2.7 79.8±2.2 81.2±2.4

BMI, kg/m2 24.2±00.5 24.5±0.6 25.7±0.6

Body fat, % 17.7±1.2 22.4±2.0* 25.1±1.4*

Waist circumference, cm 83.6±1.8 90.0±1.8* 92.5±2.0*

Systolic BP, mmHg 118±2 115±2 128±2*†

Diastolic BP, mmHg 70±2 75±2 78±2*

Total cholesterol, mmol/L 4.0±0.2 4.5±0.2 5.4±0.2*†

LDL-cholesterol, mmol/L 2.4±0.2 2.7±0.2 3.3±0.2*†

HDL-cholesterol, mmol/L 1.2±0.1 1.1±0.1 1.2±0.1

Triglycerides, mmol/L 1.0±0.1 1.4±0.1* 1.3±0.1

Glucose, mmol/L 4.7±0.1 5.1±0.1* 5.3±0.1*

Insulin, pmol/L 36.6±4.1 50.0±5.7 43.4±4.8

ox-LDL, U/L 54.9±4.7 76.1±4.6* 77.7±6.0*

Values are mean ± SEM. BMI: body mass index; BP: blood pressure; LDL: low-density lipoprotein; HDL: high density lipoprotein.

*
P < 0.05 vs. young

†
P < 0.05 vs. middle-aged.
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