3,946 research outputs found
Markov Chain Methods For Analyzing Complex Transport Networks
We have developed a steady state theory of complex transport networks used to
model the flow of commodity, information, viruses, opinions, or traffic. Our
approach is based on the use of the Markov chains defined on the graph
representations of transport networks allowing for the effective network
design, network performance evaluation, embedding, partitioning, and network
fault tolerance analysis. Random walks embed graphs into Euclidean space in
which distances and angles acquire a clear statistical interpretation. Being
defined on the dual graph representations of transport networks random walks
describe the equilibrium configurations of not random commodity flows on
primary graphs. This theory unifies many network concepts into one framework
and can also be elegantly extended to describe networks represented by directed
graphs and multiple interacting networks.Comment: 26 pages, 4 figure
Investigating the high-frequency spectral features of SNRs Tycho, W44 and IC443 with the Sardinia Radio Telescope
The main characteristics in the radio continuum spectra of Supernova Remnants
(SNRs) result from simple synchrotron emission. In addition, electron
acceleration mechanisms can shape the spectra in specific ways, especially at
high radio frequencies. These features are connected to the age and the
peculiar conditions of the local interstellar medium interacting with the SNR.
Whereas the bulk radio emission is expected at up to GHz, sensitive
high-resolution images of SNRs above 10 GHz are lacking and are not easily
achievable, especially in the confused regions of the Galactic Plane. In the
framework of the early science observations with the Sardinia Radio Telescope
in February-March 2016, we obtained high-resolution images of SNRs Tycho, W44
and IC443 that provided accurate integrated flux density measurements at 21.4
GHz: 8.8 0.9 Jy for Tycho, 25 3 Jy for W44 and 66 7 Jy for
IC443. We coupled the SRT measurements with radio data available in the
literature in order to characterise the integrated and spatially-resolved
spectra of these SNRs, and to find significant frequency- and region-dependent
spectral slope variations. For the first time, we provide direct evidence of a
spectral break in the radio spectral energy distribution of W44 at an
exponential cutoff frequency of 15 2 GHz. This result constrains the
maximum energy of the accelerated electrons in the range GeV, in
agreement with predictions indirectly derived from AGILE and \textit{Fermi}-LAT
gamma-ray observations. With regard to IC443, our results confirm the
noticeable presence of a bump in the integrated spectrum around GHz
that could result from a spinning dust emission mechanism.Comment: 12 pages, 9 figure
Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz
Observations of supernova remnants (SNRs) are a powerful tool for
investigating the later stages of stellar evolution, the properties of the
ambient interstellar medium, and the physics of particle acceleration and
shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra
high-energies has been provided, constraining their contributions to the
production of Galactic cosmic rays. Although radio emission is the most common
identifier of SNRs and a prime probe for refining models, high-resolution
images at frequencies above 5 GHz are surprisingly lacking, even for bright and
well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical
Validation and Early Science Program with the 64-m single-dish Sardinia Radio
Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz
of the IC443 and W44 complexes coupled with spatially-resolved spectra in the
1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping
techniques, providing antenna beam oversampling and resulting in accurate
continuum flux density measurements. The integrated flux densities associated
with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we
measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4
Jy. Spectral index maps provide evidence of a wide physical parameter scatter
among different SNR regions: a flat spectrum is observed from the brightest SNR
regions at the shock, while steeper spectral indices (up to 0.7) are observed
in fainter cooling regions, disentangling in this way different populations and
spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
Vascular responses of the extremities to transdermal application of vasoactive agents in Caucasian and African descent individuals
This is an accepted manuscript of an article published by Springer in European Journal of Applied Physiology on 04/04/2015, available online: https://doi.org/10.1007/s00421-015-3164-2
The accepted version of the publication may differ from the final published version.© 2015, Springer-Verlag Berlin Heidelberg. Purpose: Individuals of African descent (AFD) are more susceptible to non-freezing cold injury than Caucasians (CAU) which may be due, in part, to differences in the control of skin blood flow. We investigated the skin blood flow responses to transdermal application of vasoactive agents. Methods: Twenty-four young males (12 CAU and 12 AFD) undertook three tests in which iontophoresis was used to apply acetylcholine (ACh 1 w/v %), sodium nitroprusside (SNP 0.01 w/v %) and noradrenaline (NA 0.5 mM) to the skin. The skin sites tested were: volar forearm, non-glabrous finger and toe, and glabrous finger (pad) and toe (pad). Results: In response to SNP on the forearm, AFD had less vasodilatation for a given current application than CAU (P = 0.027–0.004). ACh evoked less vasodilatation in AFD for a given application current in the non-glabrous finger and toe compared with CAU (P = 0.043–0.014) with a lower maximum vasodilatation in the non-glabrous finger (median [interquartile], AFD n = 11, 41[234] %, CAU n = 12, 351[451] %, P = 0.011) and non-glabrous toe (median [interquartile], AFD n = 9, 116[318] %, CAU n = 12, 484[720] %, P = 0.018). ACh and SNP did not elicit vasodilatation in the glabrous skin sites of either group. There were no ethnic differences in response to NA. Conclusion: AFD have an attenuated endothelium-dependent vasodilatation in non-glabrous sites of the fingers and toes compared with CAU. This may contribute to lower skin temperature following cold exposure and the increased risk of cold injuries experienced by AFD.Published versio
Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation
Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status
The brightest gamma-ray flaring blazar in the sky: AGILE and multi-wavelength observations of 3C 454.3 during November 2010
Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all
frequencies, and during the last four years it has exhibited more than one
gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky.
We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and
GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare
of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520),
3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s
on a time scale of about 12 hours, more than a factor of 6 higher than the flux
of the brightest steady gamma-ray source, the Vela pulsar, and more than a
factor of 3 brighter than its previous super-flare on 2009 December 2-3. The
multi-wavelength data make a thorough study of the present event possible: the
comparison with the previous outbursts indicates a close similarity to the one
that occurred in 2009. By comparing the broadband emission before, during, and
after the gamma-ray flare, we find that the radio, optical and X-ray emission
varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This
remarkable behavior is modeled by an external Compton component driven by a
substantial local enhancement of soft seed photons.Comment: Accepted for publication in ApJ Letters. 18 Pages, 4 Figures, 1 Tabl
AGILE detection of GeV gamma-ray emission from the SNR W28
Supernova remnants (SNRs) are believed to be the main sources of Galactic
cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray
emission through the interaction of accelerated particles with the concentrated
gas. The middle aged SNR W28, for its associated system of dense molecular
clouds, provides an excellent opportunity to test this hypothesis. We present
the AGILE/GRID observations of SNR W28, and compare them with observations at
other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray
flux detected by AGILE from the dominant source associated with W28 is (14 +-
5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well
correlated with the TeV emission observed by the HESS telescope. The local
variations of the GeV to TeV flux ratio suggest a difference between the CR
spectra of the north-west and south molecular cloud complexes. A model based on
a hadronic-induced interaction and diffusion with two molecular clouds at
different distances from the W28 shell can explain both the morphological and
spectral features observed by AGILE in the MeV-GeV energy range and by the HESS
telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data
strongly support a hadronic model for the gamma-ray production in W28.Comment: Accepted for publication in Astronomy & Astrophysics Letter
The physics of spreading processes in multilayer networks
The study of networks plays a crucial role in investigating the structure,
dynamics, and function of a wide variety of complex systems in myriad
disciplines. Despite the success of traditional network analysis, standard
networks provide a limited representation of complex systems, which often
include different types of relationships (i.e., "multiplexity") among their
constituent components and/or multiple interacting subsystems. Such structural
complexity has a significant effect on both dynamics and function. Throwing
away or aggregating available structural information can generate misleading
results and be a major obstacle towards attempts to understand complex systems.
The recent "multilayer" approach for modeling networked systems explicitly
allows the incorporation of multiplexity and other features of realistic
systems. On one hand, it allows one to couple different structural
relationships by encoding them in a convenient mathematical object. On the
other hand, it also allows one to couple different dynamical processes on top
of such interconnected structures. The resulting framework plays a crucial role
in helping achieve a thorough, accurate understanding of complex systems. The
study of multilayer networks has also revealed new physical phenomena that
remain hidden when using ordinary graphs, the traditional network
representation. Here we survey progress towards attaining a deeper
understanding of spreading processes on multilayer networks, and we highlight
some of the physical phenomena related to spreading processes that emerge from
multilayer structure.Comment: 25 pages, 4 figure
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
- …
