58 research outputs found

    Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    Get PDF
    Introduction. The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods. A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO§ssub§2§esub§), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results: Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions: We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. © 2013 Rojas et al.; licensee BioMed Central Ltd

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis

    Get PDF
    Background: A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings: The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance: CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. © 2013 Shu et al

    Gemcitabine with a specific conformal 3D 5FU radiochemotherapy technique is safe and effective in the definitive management of locally advanced pancreatic cancer

    Get PDF
    The aim of this phase II study was to assess the feasibility and efficacy of a specific three-dimensional conformal radiotherapy technique with concurrent continuous infusion of 5-fluorouracil (CI 5FU) sandwiched between gemcitabine chemotherapy in patients with locally advanced pancreatic cancer. Patients with inoperable cancer in the pancreatic head or body without metastases were given gemcitabine at 1000 mg m−2 weekly for 3 weeks followed by a 1-week rest and a 6-week period of radiotherapy and concurrent CI 5FU (200 mg m−2 day−1). The defined target volume was treated to 54 Gy in 30 daily fractions of 1.8 Gy. After 4 weeks' rest, gemcitabine treatment was re-initiated for three cycles (days 1, 8, 15, q28). Forty-one patients were enrolled. At the end of radiotherapy, one patient (2.4%) had a complete response and four patients (9.6%) had a partial response; at the end of treatment, three patients (7.3%) had a complete response and two patients (4.9%) had a partial response. Median survival time was 11.7 months, median time to progression was 7.1 months, and median time to failure of local control was 11.9 months. The 1- and 2-year survival rates were 46.3 and 9.8%, respectively. Treatment-related grade 3 and 4 toxicities were reported by 16 (39.0%) and four (9.8%) patients, respectively. Sixteen out of 41 patients did not complete the planned treatment and nine due to disease progression. This approach to treatment of locally advanced pancreatic cancer is safe and promising, with good local control for a substantial proportion of patients, and merits testing in a randomised trial

    Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer

    Get PDF
    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolising enzyme inducing immune tolerance. The present study aimed to investigate IDO expression and its prognostic significance in endometrial cancer. Indoleamine 2,3-dioxygenase expression in endometrial cancer tissues (n=80) was immunohistochemically scored as four groups (IDO−, 1+, 2+, and 3+). The high IDO expression (IDO2+ or 3+) in tumour cells was found in 37 (46.3%) of the 80 cases, and was positively correlated with surgical stage, myometrial invasion, lymph-vascular space involvement, and lymph node metastasis, but not with the histological grade. Patients with high IDO expression had significantly impaired overall survival and progression-free survival (PFS) (P=0.002 and P=0.001, respectively) compared to patients with no or weak expression of IDO (IDO− or 1+). The 5-year PFS for IDO−/1+, 2+, and 3+ were 97.7, 72.9, and 36.4%, respectively. Even in patients with early-stage disease (International Federation of Gynecology and Obstetrics I/II, n=64), the PFS for IDO2+/3+ was significantly poor (P=0.001) compared to that for IDO−/1+. On multivariate analysis, IDO expression was an independent prognostic factor for PFS (P=0.020). These results indicated that the high IDO expression was involved in the progression of endometrial cancer and correlated with the impaired clinical outcome, suggesting that IDO is a novel and reliable prognostic indicator for endometrial cancer

    Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.</p> <p>Methods/Design</p> <p>The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions.</p> <p>Discussion</p> <p>The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal treatment concept of advanced ovarian cancer FIGO stage III.</p

    Systematic review, including meta-analyses, on the management of locally advanced pancreatic cancer using radiation/combined modality therapy

    Get PDF
    There is no consensus on the management of locally advanced pancreatic cancer, with either chemotherapy or combined modality approaches being employed (Maheshwari and Moser, 2005). No published meta-analysis (Fung et al, 2003; Banu et al, 2005; Liang, 2005; Bria et al, 2006; Milella et al, 2006) has included randomised controlled trials employing radiation therapy. The aim of this systematic review was to compare the following: (i) chemoradiation followed by chemotherapy (combined modality therapy) vs best supportive care (ii) radiotherapy vs chemoradiation (iii) radiotherapy vs combined modality therapy (iv) chemotherapy vs combined modality therapy (v) 5FU-based combined modality treatment vs another-agent-based combined modality therapy. Relevant randomised controlled trials were identified by searching databases, trial registers and conference proceedings. The primary end point was overall survival and secondary end points were progression-free survival/time-to-progression, response rate and adverse events. Survival data were summarised using hazard ratio (HR) and response-rate/adverse-event data with relative risk. Eleven trials involving 794 patients met the inclusion criteria. Length of survival with chemoradiation was increased compared with radiotherapy alone (two trials, 168 patients, HR 0.69; 95% confidence interval (CI) 0.51–0.94), but chemoradiation followed by chemotherapy did not lead to a survival advantage over chemotherapy alone (two trials, 134 patients, HR 0.79; CI 0.32–1.95). Meta-analyses could not be performed for the other comparisons. A survival benefit was demonstrated for chemoradiation over radiotherapy alone. Chemoradiation followed by chemotherapy did not demonstrate any survival advantage over chemotherapy alone, but important clinical differences cannot be ruled out due to the wide CI

    Delivering 21st century Antarctic and Southern Ocean science

    Get PDF
    The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together
    corecore