372 research outputs found

    Occurrence of fungi in the potable water of hospitals: A public health threat

    Get PDF
    Since the last decade, attention towards the occurrence of fungi in potable water has increased. Commensal and saprophytic microorganisms widely distributed in nature are also responsible for causing public health problems. Fungi can contaminate hospital environments, surviving and proliferating in moist and unsterile conditions. According to Italian regulations, the absence of fungi is not a mandatory parameter to define potable water, as a threshold value for the fungal occurrence has not been defined. This study evaluated the occurrence of fungi in potable water distribution systems in hospitals. The frequency of samples positive for the presence of fungi was 56.9%; among them, filamentous fungi and yeasts were isolated from 94.2% and 9.2% of the samples, respectively. The intensive care unit (87.1%) had the highest frequency of positive samples. Multivariable model (p < 0.0001), the variables of the period of the year (p < 0.0001) and type of department (p = 0.0002) were found to be statistically significant, suggesting a high distribution of filamentous fungi in the potable water of hospitals. Further studies are necessary to validate these results and identify the threshold values of fungi levels for different types of water used for various purposes to ensure the water is safe for consumption and protect public health

    Invasive fungal infections in Neonatal Intensive Care Units of Southern Italy: a multicentre regional active surveillance (AURORA Project)

    Get PDF
    Introduction. During the past years invasive fungal infections (IFIs) have become an increasingly important problem in infants hospitalized in the Neonatal Intensive Care Unit (NICU). Candida species is the third most-common agent of late-onset infections in critically ill neonates, with an estimated incidence of 2.6-10% in very low birth weight and 5.5-20% in extremely low birth weight infants. The aim of this observational study is to evaluate the epidemiology of IFIs among infants admitted to NICUs of one Italian region by a multicenter surveillance (Aurora Project). Methods. The IFIs surveillance was carried out prospectively in Apulia (Southern Italy) between February 2007 and August 2008. This report focuses on the results from 6 enrolled NICUs. Results. Twenty-one neonates developed IFIs: the overall incidence was 1.3% and crude mortality was 23.8%. Infants weighing ? 1500g (4.3%) showed a significantly higher incidence than those ? 2500g (0.2%). C.parapsilosis (61.9%) was the most frequent isolated species. The main potential risk factors were having a central venous catheter placed, length of stay in NICU > 7 days and total parenteral nutrition for > 5 days. The (1,3)-Ã-D glucan (BDG), mannan antigens and anti-Candida antibodies? evaluation was performed in 7 neonates. All neonates were positive to the BDG; the mannan antigen result was positive in 5 newborns, the anti-mannan antibodies were always negative. All isolates were amphotericin B and fluconazole-susceptible. Discussion. This first prospective study on neonatal fungal infection in one Italian region gives evidence of a preponderance of non-albicans Candida spp and indicates potential utility of BDG as an adjunct diagnostic test

    Potential Use of Bio-Oleogel as Phase Change Material

    Get PDF
    Two bio-oleogels were investigated. These materials were produced with a combination of canola and soybean oil with 4, 6, 8, and 10% of beeswax (by weight). Sensible heat storage capacity, melting parameters, and enthalpies were investigated by the differential scanning calorimetry (DSC) test. An ordinary DSC dynamic test was performed. Cycles of heating and cooling were performed, as well as tests with different heating rates. According to the results, the materials present a melting temperature between −16 to −12 °C and a total latent heat between 22.9 and 367.6 J/g. BC10 (canola oil with 10% beeswax) was the sample with the best performance, with a latent heat of 367.6 J/g and a melting temperature of −13.6 °C, demonstrating its possible use as a phase change material for cold storage

    Assesment of the 3H(n,2n) Reaction for NIF-relevant Simulations

    Get PDF

    Unbound exotic nuclei studied by projectile fragmentation

    Full text link
    We call "projectile fragmentation" of neutron halo nuclei the elastic breakup (diffraction) reaction, when the observable studied is the neutron-core relative energy spectrum. This observable has been measured in relation to the Coulomb breakup on heavy target and recently also on light targets. Such data enlighten the effect of the neutron final state interaction with the core of origin. Projectile fragmentation is studied here by a time dependent model for the excitation of a nucleon from a bound state to a continuum resonant state in a neutron-core complex potential which acts as a final state interaction. The final state is described by an optical model S-matrix so that both resonant and non resonant states of any continuum energy can be studied as well as deeply bound initial states. It turns out that due to the coupling between the initial and final states, the neutron-core free particle phase shifts are modified, in the exit channel, by an additional phase. Some typical numerical calculations for the relevant observables are presented and compared to experimental data. It is suggest that the excitation energy spectra of an unbound nucleus might reflect the structure of the parent nucleus from whose fragmentation they are obtained.Comment: Proceedings of the 11th Conference on Problems in Theoretican Nuclear Physics, Cortona, Italy, 2006. World Scientifi

    Neutron time-of-flight measurements of charged-particle energy loss in inertial confinement fusion plasmas

    Get PDF
    Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4  keV and particle densities of n≈(12-2)×10^{24}  cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data

    LIPSS applied to wide bandgap semiconductors and dielectrics: assessment and future perspectives

    Get PDF
    With the aim of presenting the processes governing the Laser-Induced Periodic Surface Structures (LIPSS), its main theoretical models have been reported. More emphasis is given to those suitable for clarifying the experimental structures observed on the surface of wide bandgap semiconductors (WBS) and dielectric materials. The role played by radiation surface electromagnetic waves as well as Surface Plasmon Polaritons in determining both Low and High Spatial Frequency LIPSS is briefly discussed, together with some experimental evidence. Non-conventional techniques for LIPSS formation are concisely introduced to point out the high technical possibility of enhancing the homogeneity of surface structures as well as tuning the electronic properties driven by point defects induced in WBS. Among these, double-or multiple-fs-pulse irradiations are shown to be suitable for providing further insight into the LIPSS process together with fine control on the formed surface structures. Modifications occurring by LIPSS on surfaces of WBS and dielectrics display high potentialities for their cross-cutting technological features and wide applications in which the main surface and electronic properties can be engineered. By these assessments, the employment of such nanostructured materials in innovative devices could be envisaged

    Sars‐cov‐2 and public transport in Italy

    Get PDF
    Although direct contact is considered the main mode of transmission of SARS‐CoV‐2, environmental factors play an important role. In this study, we evaluated the presence of SARS‐ CoV‐2 on bus and train surfaces. From the buses, we took samples from the following areas: handrails used to enter or exit the bus, stop request buttons and handles next to the seats. From the trains, the sampled surfaces were handrails used to enter or exit the train, door open/close buttons, handles next to the seats, tables and toilet handles. SARS‐CoV‐2 was detected on 10.7% of the tested surfaces overall, 19.3% of bus surfaces and 2% of train surfaces (p < 0.0001). On the buses, the most contaminated surfaces were the handles near the seats (12.8%), followed by door open/close buttons (12.5%) and handrails (10.5%). Of the five analyzed transport companies, bus companies were the most contaminated, in particular, companies C (40%) and B (23.3%). A greater number of positive samples were found among those taken at 10:00 a.m. and 10:55 a.m. (45% and 40%, respectively). The presence of the virus on many bus surfaces highlights how the sanitation systems on public transport currently in use are not sufficient to limit the spread of SARS‐CoV‐2

    A Possible Outbreak by Serratia Marcescens: Genetic Relatedness between Clinical and Environmental Strains

    Get PDF
    Serratia marcescens (SM) is a Gram-negative bacterium that is frequently found in the environment. Since 1913, when its pathogenicity was first demonstrated, the number of infections caused by SM has increased. There is ample evidence that SM causes nosocomial infections in immunocompromised or critically ill patients admitted to the intensive care units (ICUs), but also in newborns admitted to neonatal ICUs (NICUs). In this study, we evaluated the possible genetic correlation by PFGE between clinical and environmental SM strains from NICU and ICU and compared the genetic profile of clinical strains with strains isolated from patients admitted to other wards of the same hospital. We found distinct clonally related groups of SM strains circulating among different wards of a large university hospital. In particular, the clonal relationship between clinical and environmental strains in NICU and ICU 1 was highlighted. The identification of clonal relationships between clinical and environmental strains in the wards allowed identification of the epidemic and rapid implementation of adequate measures to stop the spread of SM

    Isomeric Decay of \u3csup\u3e208\u3c/sup\u3eRa

    Get PDF
    Low-energy excited states of 208Ra were investigated using the 182W(30Si, 4n) reaction at the Wright Nuclear Structure Laboratory of Yale University. Fusion evaporation recoils were selected using the gas-filled spectrometer SASSYER. Delayed Îł rays, following isomeric decays, were detected at the focal plane of SASSYER with a small array of three clover Ge detectors. Transitions following a proposed J π = 8+ isomer were observed, and the half-life was measured
    • 

    corecore