4,402 research outputs found

    Quasi-Langmuir-Blodgett Thin Film Deposition of Carbon Nanotubes

    Get PDF
    The handling and manipulation of carbon nanotubes continues to be a challenge to those interested in the application potential of these promising materials. To this end, we have developed a method to deposit pure nanotube films over large flat areas on substrates of arbitrary composition. The method bears some resemblance to the Langmuir-Blodgett deposition method used to lay down thin organic layers. We show that this redeposition technique causes no major changes in the films' microstructure and that they retain the electronic properties of as-deposited film laid down on an alumina membrane.Comment: 3 pages, 3 figures, submitted Journal of Applied Physic

    A Large Effective Phonon Magnetic Moment in a Dirac Semimetal

    Full text link
    We investigated the magnetoterahertz response of the Dirac semimetal Cd3_3As2_2 and observed a particularly low frequency optical phonon, as well as a very prominent and field sensitive cyclotron resonance. As the cyclotron frequency is tuned with field to pass through the phonon, the phonon become circularly polarized as shown by a notable splitting in their response to right- and left-hand polarized light. This splitting can be expressed as an effective phonon magnetic moment that is approximately 2.7 times the Bohr magneton, which is almost four orders of magnitude larger than ab initio calculations predict for phonon magnetic moments in nonmagnetic insulators. This exceedingly large value is due to the coupling of the phonons to the cyclotron motion and is controlled directly by the electron-phonon coupling constant. This field tunable circular-polarization selective coupling provides new functionality for nonlinear optics to create light-induced topological phases in Dirac semimetals.Comment: 15 pages for main text and SI; To appear in Nano Letters (2020

    Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

    Get PDF
    We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology

    Possible manifestation of spin fluctuations in the temperature behavior of resistivity in Sm_{1.85}Ce_{0.15}CuO_4 thin films

    Full text link
    A pronounced step-like (kink) behavior in the temperature dependence of resistivity ρ(T)\rho (T) is observed in the optimally-doped Sm1.85Ce0.15CuO4Sm_{1.85}Ce_{0.15}CuO_4 thin films around Tsf=87KT_{sf}=87K and attributed to manifestation of strong spin fluctuations induced by Sm3+Sm^{3+} moments with the energy ωsf=kBTsf7meV\hbar \omega_{sf}=k_BT_{sf}\simeq 7meV. In addition to fluctuation induced contribution ρsf(T)\rho_{sf}(T) due to thermal broadening effects (of the width ωsf\omega_{sf}), the experimental data are found to be well fitted accounting for residual (zero-temperature) ρres\rho_{res}, electron-phonon ρeph(T)=AT\rho _{e-ph}(T)=AT and electron-electron ρee(T)=BT2\rho_{e-e}(T)=BT^2 contributions. The best fits produced ωp=2.1meV\omega_p=2.1meV, τ01=9.5×1014s1\tau_0^{-1}=9.5\times 10^{-14}s^{-1}, λ=1.2\lambda =1.2, and EF=0.2eVE_F=0.2eV for estimates of the plasmon frequency, the impurity scattering rate, electron-phonon coupling constant, and the Fermi energy, respectively.Comment: 6 pages (REVTEX4), 2 EPS figures; accepted for publication in JETP Letter

    Turbulence and angular momentum transport in a global accretion disk simulation

    Get PDF
    The global development of magnetohydrodynamic turbulence in an accretion disk is studied within a simplified disk model that omits vertical stratification. Starting with a weak vertical seed field, a saturated state is obtained after a few tens of orbits in which the energy in the predominantly toroidal magnetic field is still subthermal. The efficiency of angular momentum transport, parameterized by the Shakura-Sunyaev alpha parameter, is of the order of 0.1. The dominant contribution to alpha comes from magnetic stresses, which are enhanced by the presence of weak net vertical fields. The power spectra of the magnetic fields are flat or decline only slowly towards the largest scales accessible in the calculation, suggesting that the viscosity arising from MHD turbulence may not be a locally determined quantity. I discuss how these results compare with observationally inferred values of alpha, and possible implications for models of jet formation.Comment: ApJ Letters, in press. The paper and additional visualizations are available at http://www.cita.utoronto.ca/~armitage/global_abs.htm

    Use of Surgisis for Treatment of Anterior and Posterior Vaginal Prolapse

    Get PDF
    Aim. To evaluate the anatomical success and complication rate of Surgisis in the repair of anterior and posterior vaginal wall prolapse. Methods. A retrospective review of 65 consecutive Surgisis prolapse repairs, involving the anterior and/or posterior compartment, performed between 2003 and 2009, including their objective and subjective success rates using the pelvic organ prolapse quantification (POPQ) system. Results. The subjective success rate (no symptoms and no bulge beyond the hymen) was 92%, and the overall objective success rate (no subsequent prolapse in any compartment) was 66% (43 of 65). The overall reoperation rate for de novo and recurrent prolapse was 7.7% with 3 women undergoing repeat surgery at the same site (anterior compartment). No long-term complications occurred. Conclusions. Surgisis has a definite role in the surgical treatment of prolapse. It may decrease recurrences seen with native tissue repair and long-term complications of synthetic mesh. Its use in posterior compartment repair in particular is promising

    The debris disk - terrestrial planet connection

    Full text link
    The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities -- those with very eccentric surviving giant planets -- completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at wavelengths of ~70 microns) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.Comment: Contribution to proceedings of IAU 276: Astrophysics of Planetary System
    corecore