13 research outputs found
WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome
WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.Peer reviewe
Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition
Objective: To study the relationship between thalamic glucose metabolism and neurological outcome after severe traumatic
brain injury (TBI).
Methods: Forty-nine patients with severe and closed TBI and 10 healthy control subjects with 18F-FDG PET were studied.
Patients were divided into three groups: MCS&VS group (n ¼ 17), patients in a vegetative or a minimally conscious state;
In-PTA group (n ¼ 12), patients in a state of post-traumatic amnesia (PTA); and Out-PTA group (n ¼ 20), patients who
had emerged from PTA. SPM5 software implemented in MATLAB 7 was used to determine the quantitative differences
between patients and controls. FDG-PET images were spatially normalized and an automated thalamic ROI mask was
generated. Group differences were analysed with two sample voxel-wise t-tests.
Results: Thalamic hypometabolism was the most prominent in patients with low consciousness (MCS&VS group) and the
thalamic hypometabolism in the In-PTA group was more prominent than that in the Out-PTA group. Healthy control
subjects showed the greatest thalamic metabolism. These differences in metabolism were more pronounced in the internal
regions of the thalamus.
Conclusions: The results confirm the vulnerability of the thalamus to suffer the effect of the dynamic forces generated during
a TBI. Patients with thalamic hypometabolism could represent a sub-set of subjects that are highly vulnerable to
neurological disability after TBI.Lull Noguera, N.; Noé, E.; Lull Noguera, JJ.; Garcia Panach, J.; Chirivella, J.; Ferri, J.; López-Aznar, D.... (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Injury. 24(9):1098-1107. doi:10.3109/02699052.2010.494592S10981107249Gallagher, C. N., Hutchinson, P. J., & Pickard, J. D. (2007). Neuroimaging in trauma. Current Opinion in Neurology, 20(4), 403-409. doi:10.1097/wco.0b013e32821b987bWoischneck, D., Klein, S., Rei�berg, S., D�hring, W., Peters, B., & Firsching, R. (2001). Classification of Severe Head Injury Based on Magnetic Resonance Imaging. Acta Neurochirurgica, 143(3), 263-271. doi:10.1007/s007010170106Grados, M. A. (2001). Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. Journal of Neurology, Neurosurgery & Psychiatry, 70(3), 350-358. doi:10.1136/jnnp.70.3.350Meythaler, J. M., Peduzzi, J. D., Eleftheriou, E., & Novack, T. A. (2001). Current concepts: Diffuse axonal injury–associated traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(10), 1461-1471. doi:10.1053/apmr.2001.25137Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive Sequelae of Diffuse Axonal Injury. Archives of Neurology, 63(3), 418. doi:10.1001/archneur.63.3.418Brandstack, N., Kurki, T., Tenovuo, O., & Isoniemi, H. (2006). MR imaging of head trauma: Visibility of contusions and other intraparenchymal injuries in early and late stage. Brain Injury, 20(4), 409-416. doi:10.1080/02699050500487951Xu, J., Rasmussen, I.-A., Lagopoulos, J., & Håberg, A. (2007). Diffuse Axonal Injury in Severe Traumatic Brain Injury Visualized Using High-Resolution Diffusion Tensor Imaging. Journal of Neurotrauma, 24(5), 753-765. doi:10.1089/neu.2006.0208Levine, B., Fujiwara, E., O’connor, C., Richard, N., Kovacevic, N., Mandic, M., … Black, S. E. (2006). In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging. Journal of Neurotrauma, 23(10), 1396-1411. doi:10.1089/neu.2006.23.1396Metting, Z., Rödiger, L. A., De Keyser, J., & van der Naalt, J. (2007). Structural and functional neuroimaging in mild-to-moderate head injury. The Lancet Neurology, 6(8), 699-710. doi:10.1016/s1474-4422(07)70191-6Nakayama, N. (2006). Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 856-862. doi:10.1136/jnnp.2005.080523Nakayama, N. (2006). Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology, Neurosurgery & Psychiatry, 77(7), 850-855. doi:10.1136/jnnp.2005.077875O’Leary, D. D. M., Schlaggar, B. L., & Tuttle, R. (1994). Specification of Neocortical Areas and Thalamocortical Connections. Annual Review of Neuroscience, 17(1), 419-439. doi:10.1146/annurev.ne.17.030194.002223Mitelman, S. A., Byne, W., Kemether, E. M., Newmark, R. E., Hazlett, E. A., Haznedar, M. M., & Buchsbaum, M. S. (2006). Metabolic thalamocortical correlations during a verbal learning task and their comparison with correlations among regional volumes. Brain Research, 1114(1), 125-137. doi:10.1016/j.brainres.2006.07.043Laureys, S., Faymonville, M., Luxen, A., Lamy, M., Franck, G., & Maquet, P. (2000). Restoration of thalamocortical connectivity after recovery from persistent vegetative state. The Lancet, 355(9217), 1790-1791. doi:10.1016/s0140-6736(00)02271-6Laureys, S., Goldman, S., Phillips, C., Van Bogaert, P., Aerts, J., Luxen, A., … Maquet, P. (1999). Impaired Effective Cortical Connectivity in Vegetative State: Preliminary Investigation Using PET. NeuroImage, 9(4), 377-382. doi:10.1006/nimg.1998.0414Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. The Lancet Neurology, 3(9), 537-546. doi:10.1016/s1474-4422(04)00852-xGuye, M., Bartolomei, F., & Ranjeva, J.-P. (2008). Imaging structural and functional connectivity: towards a unified definition of human brain organization? Current Opinion in Neurology, 24(4), 393-403. doi:10.1097/wco.0b013e3283065cfbPrice, C. J., & Friston, K. J. (2002). Functional Imaging Studies of Neuropsychological Patients: Applications and Limitations. Neurocase, 8(5), 345-354. doi:10.1076/neur.8.4.345.16186Kim, J., Avants, B., Patel, S., Whyte, J., Coslett, B. H., Pluta, J., … Gee, J. C. (2008). Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study. NeuroImage, 39(3), 1014-1026. doi:10.1016/j.neuroimage.2007.10.005Maxwell, W. L., MacKinnon, M. A., Smith, D. H., McIntosh, T. K., & Graham, D. I. (2006). Thalamic Nuclei After Human Blunt Head Injury. Journal of Neuropathology & Experimental Neurology, 65(5), 478-488. doi:10.1097/01.jnen.0000229241.28619.75SIDAROS, A., SKIMMINGE, A., LIPTROT, M., SIDAROS, K., ENGBERG, A., HERNING, M., … ROSTRUP, E. (2009). Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates. NeuroImage, 44(1), 1-8. doi:10.1016/j.neuroimage.2008.08.030Ashburner, J., & Friston, K. J. (2000). Voxel-Based Morphometry—The Methods. NeuroImage, 11(6), 805-821. doi:10.1006/nimg.2000.0582Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage, 14(1), 21-36. doi:10.1006/nimg.2001.0786Giacino, J. T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D. I., … Zasler, N. D. (2002). The minimally conscious state: Definition and diagnostic criteria. Neurology, 58(3), 349-353. doi:10.1212/wnl.58.3.349Gispert, J. ., Pascau, J., Reig, S., Martínez-Lázaro, R., Molina, V., García-Barreno, P., & Desco, M. (2003). Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. NeuroImage, 19(3), 601-612. doi:10.1016/s1053-8119(03)00072-7Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4), 254-266. doi:10.1002/(sici)1097-0193(1999)7:43.0.co;2-gTzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273-289. doi:10.1006/nimg.2001.0978Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15(4), 870-878. doi:10.1006/nimg.2001.1037LAUREYS, S., LEMAIRE, C., MAQUET, P., PHILLIPS, C., & FRANCK, G. (1999). Cerebral metabolism during vegetative state and after recovery to consciousness. Journal of Neurology, Neurosurgery & Psychiatry, 67(1), 121-122. doi:10.1136/jnnp.67.1.121Tommasino, C., Grana, C., Lucignani, G., Torri, G., & Fazio, F. (1995). Regional Cerebral Metabolism of Glucose in Comatose and Vegetative State Patients. Journal of Neurosurgical Anesthesiology, 7(2), 109-116. doi:10.1097/00008506-199504000-00006ANDERSON, C. V., WOOD, D.-M. G., BIGLER, E. D., & BLATTER, D. D. (1996). Lesion Volume, Injury Severity, and Thalamic Integrity following Head Injury. Journal of Neurotrauma, 13(2), 59-65. doi:10.1089/neu.1996.13.59Ge, Y., Patel, M. B., Chen, Q., Grossman, E. J., Zhang, K., Miles, L., … Grossman, R. I. (2009). Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Injury, 23(7-8), 666-674. doi:10.1080/02699050903014899Uzan, M. (2003). Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 33-38. doi:10.1136/jnnp.74.1.33OMMAYA, A. K., & GENNARELLI, T. A. (1974). CEREBRAL CONCUSSION AND TRAUMATIC UNCONSCIOUSNESS. Brain, 97(1), 633-654. doi:10.1093/brain/97.1.633Giacino, J., & Whyte, J. (2005). The Vegetative and Minimally Conscious States. Journal of Head Trauma Rehabilitation, 20(1), 30-50. doi:10.1097/00001199-200501000-00005Zeman, A. (2001). Consciousness. Brain, 124(7), 1263-1289. doi:10.1093/brain/124.7.1263Kinney, H. C., Korein, J., Panigrahy, A., Dikkes, P., & Goode, R. (1994). Neuropathological Findings in the Brain of Karen Ann Quinlan -- The Role of the Thalamus in the Persistent Vegetative State. New England Journal of Medicine, 330(21), 1469-1475. doi:10.1056/nejm199405263302101Saeeduddin Ahmed, Rex Bierley, Java. (2000). Post-traumatic amnesia after closed head injury: a review of the literature and some suggestions for further research. Brain Injury, 14(9), 765-780. doi:10.1080/026990500421886Wilson, J. T., Hadley, D. M., Wiedmann, K. D., & Teasdale, G. M. (1995). Neuropsychological consequences of two patterns of brain damage shown by MRI in survivors of severe head injury. Journal of Neurology, Neurosurgery & Psychiatry, 59(3), 328-331. doi:10.1136/jnnp.59.3.328Wilson, J. T., Teasdale, G. M., Hadley, D. M., Wiedmann, K. D., & Lang, D. (1994). Post-traumatic amnesia: still a valuable yardstick. Journal of Neurology, Neurosurgery & Psychiatry, 57(2), 198-201. doi:10.1136/jnnp.57.2.198Fearing, M. A., Bigler, E. D., Wilde, E. A., Johnson, J. L., Hunter, J. V., Xiaoqi Li, … Levin, H. S. (2008). Morphometric MRI Findings in the Thalamus and Brainstem in Children After Moderate to Severe Traumatic Brain Injury. Journal of Child Neurology, 23(7), 729-737. doi:10.1177/0883073808314159Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., … Gorelick, P. B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558-564. doi:10.1212/wnl.0b013e3181cff5d
