106 research outputs found
Loop models on random maps via nested loops: case of domain symmetry breaking and application to the Potts model
We use the nested loop approach to investigate loop models on random planar
maps where the domains delimited by the loops are given two alternating colors,
which can be assigned different local weights, hence allowing for an explicit
Z_2 domain symmetry breaking. Each loop receives a non local weight n, as well
as a local bending energy which controls loop turns. By a standard cluster
construction that we review, the Q = n^2 Potts model on general random maps is
mapped to a particular instance of this problem with domain-non-symmetric
weights. We derive in full generality a set of coupled functional relations for
a pair of generating series which encode the enumeration of loop configurations
on maps with a boundary of a given color, and solve it by extending well-known
complex analytic techniques. In the case where loops are fully-packed, we
analyze in details the phase diagram of the model and derive exact equations
for the position of its non-generic critical points. In particular, we
underline that the critical Potts model on general random maps is not self-dual
whenever Q \neq 1. In a model with domain-symmetric weights, we also show the
possibility of a spontaneous domain symmetry breaking driven by the bending
energy.Comment: 44 pages, 13 figure
Large deviations of the maximal eigenvalue of random matrices
We present detailed computations of the 'at least finite' terms (three
dominant orders) of the free energy in a one-cut matrix model with a hard edge
a, in beta-ensembles, with any polynomial potential. beta is a positive number,
so not restricted to the standard values beta = 1 (hermitian matrices), beta =
1/2 (symmetric matrices), beta = 2 (quaternionic self-dual matrices). This
model allows to study the statistic of the maximum eigenvalue of random
matrices. We compute the large deviation function to the left of the expected
maximum. We specialize our results to the gaussian beta-ensembles and check
them numerically. Our method is based on general results and procedures already
developed in the literature to solve the Pastur equations (also called "loop
equations"). It allows to compute the left tail of the analog of Tracy-Widom
laws for any beta, including the constant term.Comment: 62 pages, 4 figures, pdflatex ; v2 bibliography corrected ; v3 typos
corrected and preprint added ; v4 few more numbers adde
Spectral density asymptotics for Gaussian and Laguerre -ensembles in the exponentially small region
The first two terms in the large asymptotic expansion of the
moment of the characteristic polynomial for the Gaussian and Laguerre
-ensembles are calculated. This is used to compute the asymptotic
expansion of the spectral density in these ensembles, in the exponentially
small region outside the leading support, up to terms . The leading form
of the right tail of the distribution of the largest eigenvalue is given by the
density in this regime. It is demonstrated that there is a scaling from this,
to the right tail asymptotics for the distribution of the largest eigenvalue at
the soft edge.Comment: 19 page
Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation
Using pole decompositions as starting points, the one parameter (-1 =< c < 1)
nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of
premixed gaseous flames is studied in the large-wrinkle limit. The singular
integral equations for pole densities are closely related to those satisfied by
the spectral density in the O(n) matrix model, with n = -2(1 + c)/(1 - c). They
can be solved via the introduction of complex resolvents and the use of complex
analysis. We retrieve results obtained recently for -1 =< c =< 0, and we
explain and cure their pathologies when they are continued naively to 0 < c <
1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the
shapes of steady isolated flame crests, and then bicoalesced periodic fronts.
These theoretical results fully agree with numerical resolutions. Open problems
are evoked.Comment: v2: 29 pages, 6 figures, some typos correcte
Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies
We compute the generating functions of a O(n) model (loop gas model) on a
random lattice of any topology. On the disc and the cylinder, they were already
known, and here we compute all the other topologies. We find that the
generating functions (and the correlation functions of the lattice) obey the
topological recursion, as usual in matrix models, i.e they are given by the
symplectic invariants of their spectral curve.Comment: pdflatex, 89 pages, 12 labelled figures (15 figures at all), minor
correction
Non-intersecting Brownian walkers and Yang-Mills theory on the sphere
We study a system of N non-intersecting Brownian motions on a line segment
[0,L] with periodic, absorbing and reflecting boundary conditions. We show that
the normalized reunion probabilities of these Brownian motions in the three
models can be mapped to the partition function of two-dimensional continuum
Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and
SO(2N). Consequently, we show that in each of these Brownian motion models, as
one varies the system size L, a third order phase transition occurs at a
critical value L=L_c(N)\sim \sqrt{N} in the large N limit. Close to the
critical point, the reunion probability, properly centered and scaled, is
identical to the Tracy-Widom distribution describing the probability
distribution of the largest eigenvalue of a random matrix. For the periodic
case we obtain the Tracy-Widom distribution corresponding to the GUE random
matrices, while for the absorbing and reflecting cases we get the Tracy-Widom
distribution corresponding to GOE random matrices. In the absorbing case, the
reunion probability is also identified as the maximal height of N
non-intersecting Brownian excursions ("watermelons" with a wall) whose
distribution in the asymptotic scaling limit is then described by GOE
Tracy-Widom law. In addition, large deviation formulas for the maximum height
are also computed.Comment: 37 pages, 4 figures, revised and published version. A typo has been
corrected in Eq. (10
Supersymmetric Vacua in Random Supergravity
We determine the spectrum of scalar masses in a supersymmetric vacuum of a
general N=1 supergravity theory, with the Kahler potential and superpotential
taken to be random functions of N complex scalar fields. We derive a random
matrix model for the Hessian matrix and compute the eigenvalue spectrum.
Tachyons consistent with the Breitenlohner-Freedman bound are generically
present, and although these tachyons cannot destabilize the supersymmetric
vacuum, they do influence the likelihood of the existence of an `uplift' to a
metastable vacuum with positive cosmological constant. We show that the
probability that a supersymmetric AdS vacuum has no tachyons is formally
equivalent to the probability of a large fluctuation of the smallest eigenvalue
of a certain real Wishart matrix. For normally-distributed matrix entries and
any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2),
with W denoting the superpotential and m_{susy} the supersymmetric mass scale;
for more general distributions of the entries, our result is accurate when N >>
1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are
ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure
A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix
In this paper, we first briefly review some recent results on the
distribution of the maximal eigenvalue of a random matrix drawn
from Gaussian ensembles. Next we focus on the Gaussian Unitary Ensemble (GUE)
and by suitably adapting a method of orthogonal polynomials developed by Gross
and Matytsin in the context of Yang-Mills theory in two dimensions, we provide
a rather simple derivation of the Tracy-Widom law for GUE. Our derivation is
based on the elementary asymptotic scaling analysis of a pair of coupled
nonlinear recursion relations. As an added bonus, this method also allows us to
compute the precise subleading terms describing the right large deviation tail
of the maximal eigenvalue distribution. In the Yang-Mills language, these
subleading terms correspond to non-perturbative (in expansion)
corrections to the two-dimensional partition function in the so called `weak'
coupling regime.Comment: 2 figure
- …