106 research outputs found

    Loop models on random maps via nested loops: case of domain symmetry breaking and application to the Potts model

    Full text link
    We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symmetry breaking. Each loop receives a non local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n^2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully-packed, we analyze in details the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q \neq 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy.Comment: 44 pages, 13 figure

    Modular functors, cohomological field theories and topological recursion

    Get PDF

    Large deviations of the maximal eigenvalue of random matrices

    Full text link
    We present detailed computations of the 'at least finite' terms (three dominant orders) of the free energy in a one-cut matrix model with a hard edge a, in beta-ensembles, with any polynomial potential. beta is a positive number, so not restricted to the standard values beta = 1 (hermitian matrices), beta = 1/2 (symmetric matrices), beta = 2 (quaternionic self-dual matrices). This model allows to study the statistic of the maximum eigenvalue of random matrices. We compute the large deviation function to the left of the expected maximum. We specialize our results to the gaussian beta-ensembles and check them numerically. Our method is based on general results and procedures already developed in the literature to solve the Pastur equations (also called "loop equations"). It allows to compute the left tail of the analog of Tracy-Widom laws for any beta, including the constant term.Comment: 62 pages, 4 figures, pdflatex ; v2 bibliography corrected ; v3 typos corrected and preprint added ; v4 few more numbers adde

    Spectral density asymptotics for Gaussian and Laguerre β\beta-ensembles in the exponentially small region

    Full text link
    The first two terms in the large NN asymptotic expansion of the β\beta moment of the characteristic polynomial for the Gaussian and Laguerre β\beta-ensembles are calculated. This is used to compute the asymptotic expansion of the spectral density in these ensembles, in the exponentially small region outside the leading support, up to terms o(1)o(1) . The leading form of the right tail of the distribution of the largest eigenvalue is given by the density in this regime. It is demonstrated that there is a scaling from this, to the right tail asymptotics for the distribution of the largest eigenvalue at the soft edge.Comment: 19 page

    Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation

    Full text link
    Using pole decompositions as starting points, the one parameter (-1 =< c < 1) nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of premixed gaseous flames is studied in the large-wrinkle limit. The singular integral equations for pole densities are closely related to those satisfied by the spectral density in the O(n) matrix model, with n = -2(1 + c)/(1 - c). They can be solved via the introduction of complex resolvents and the use of complex analysis. We retrieve results obtained recently for -1 =< c =< 0, and we explain and cure their pathologies when they are continued naively to 0 < c < 1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the shapes of steady isolated flame crests, and then bicoalesced periodic fronts. These theoretical results fully agree with numerical resolutions. Open problems are evoked.Comment: v2: 29 pages, 6 figures, some typos correcte

    Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies

    Full text link
    We compute the generating functions of a O(n) model (loop gas model) on a random lattice of any topology. On the disc and the cylinder, they were already known, and here we compute all the other topologies. We find that the generating functions (and the correlation functions of the lattice) obey the topological recursion, as usual in matrix models, i.e they are given by the symplectic invariants of their spectral curve.Comment: pdflatex, 89 pages, 12 labelled figures (15 figures at all), minor correction

    Non-intersecting Brownian walkers and Yang-Mills theory on the sphere

    Full text link
    We study a system of N non-intersecting Brownian motions on a line segment [0,L] with periodic, absorbing and reflecting boundary conditions. We show that the normalized reunion probabilities of these Brownian motions in the three models can be mapped to the partition function of two-dimensional continuum Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and SO(2N). Consequently, we show that in each of these Brownian motion models, as one varies the system size L, a third order phase transition occurs at a critical value L=L_c(N)\sim \sqrt{N} in the large N limit. Close to the critical point, the reunion probability, properly centered and scaled, is identical to the Tracy-Widom distribution describing the probability distribution of the largest eigenvalue of a random matrix. For the periodic case we obtain the Tracy-Widom distribution corresponding to the GUE random matrices, while for the absorbing and reflecting cases we get the Tracy-Widom distribution corresponding to GOE random matrices. In the absorbing case, the reunion probability is also identified as the maximal height of N non-intersecting Brownian excursions ("watermelons" with a wall) whose distribution in the asymptotic scaling limit is then described by GOE Tracy-Widom law. In addition, large deviation formulas for the maximum height are also computed.Comment: 37 pages, 4 figures, revised and published version. A typo has been corrected in Eq. (10

    Supersymmetric Vacua in Random Supergravity

    Full text link
    We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N >> 1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure

    A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix

    Full text link
    In this paper, we first briefly review some recent results on the distribution of the maximal eigenvalue of a (N×N)(N\times N) random matrix drawn from Gaussian ensembles. Next we focus on the Gaussian Unitary Ensemble (GUE) and by suitably adapting a method of orthogonal polynomials developed by Gross and Matytsin in the context of Yang-Mills theory in two dimensions, we provide a rather simple derivation of the Tracy-Widom law for GUE. Our derivation is based on the elementary asymptotic scaling analysis of a pair of coupled nonlinear recursion relations. As an added bonus, this method also allows us to compute the precise subleading terms describing the right large deviation tail of the maximal eigenvalue distribution. In the Yang-Mills language, these subleading terms correspond to non-perturbative (in 1/N1/N expansion) corrections to the two-dimensional partition function in the so called `weak' coupling regime.Comment: 2 figure
    corecore