117 research outputs found
Proliferation of sorted human and rat beta cells
Aims/hypothesis: The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors. Methods: Human beta cells were purified by FACS by virtue of their high zinc content using Newport Green, and excluding ductal and dead cells. Rat beta cells were sorted by autofluorescence or using the same method developed for human cells. Cells were plated on poly-l-lysine or ECMs from rat or human bladder carcinoma cells or bovine corneal ECM and incubated in the presence of BrdU with or without growth factors. Results: The newly developed method for sorting human beta cells yields a population containing 91.4 ± 2.8% insulin-positive cells with a low level of spontaneous apoptosis and a robust secretory response to glucose. Beta cells from 8-week-old rats proliferated in culture and this was increased by ECM. Among growth factors, only human growth hormone (hGH) and the glucagon-like peptide-1 analogue liraglutide enhanced proliferation of rat beta cells, with a significant increase on both poly-l-lysine and ECM. By contrast, sorted adult human beta cells from 16 donors aged 48.9 ± 14.3years (range 16-64years) failed to replicate demonstrably in vitro regardless of the substratum or growth factors used. Conclusions/interpretation: These findings indicate that, in our conditions, the fully differentiated human adult insulin-producing beta cell was unable to proliferate in vitro. This has important implications for any attempt to expand cells from pancreases of donors of this age group. By contrast, the rat beta cells used here were able to divide in vitro, and this was enhanced by ECM, hGH and liraglutid
Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation*
Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the growth hormone receptor (GHR) signaling domain. The entire extracellular domain of the GHR was replaced by the hemagglutinin-tagged zipper sequence of either the c-Fos or c-Jun transcription factor (termed Fos-GHR and Jun-GHR, respectively). Transient transfection of Fos-GHR or Jun-GHR resulted in activation of the serine protease inhibitor 2.1 promoter in Chinese hamster ovary-K1 cells to a level equal to that achieved by fully activated wild type GHR. Furthermore, stable expression of Jun-GHR alone or Fos-GHR and Jun-GHR together in the interleukin 3-dependent BaF-B03 cell line resulted in cell proliferation after interleukin 3 withdrawal at a rate equal to maximally stimulated wild type GHR-expressing cells. Activation of STAT 5b was also observed in Fos-Jun-GHR-expressing cells at a level equal to that in chronically GH-treated GHR-expressing cells. Thus, forced dimerization of the transmembrane and cytoplasmic domains of the GHR in the absence of the extracellular domain can lead to the constitutive activation of known GH signaling end points, supporting the view that proximity of Janus kinase 2 (JAK2) kinases is the essential element in signaling. Such constitutively active GH receptors may have particular utility for transgenic livestock applications
Recommended from our members
Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding
Insufficient insulin secretion is a hallmark of type 2 diabetes and has been attributed to beta cell identity loss characterized by decreased expression of several key beta cell genes. The pro-inflammatory factor BMP-2 is upregulated in islets of Langerhans from individuals with diabetes and acts as an inhibitor of beta cell function and proliferation. Exposure to BMP-2 induces expression of Id1-4, Hes-1, and Hey-1 which are transcriptional regulators associated with loss of differentiation. The aim of this study was to investigate the mechanism by which BMP-2 induces beta cell dysfunction and loss of cell maturity. Mouse islets exposed to BMP-2 for 10 days showed impaired glucose-stimulated insulin secretion and beta cell proliferation. BMP-2-induced beta cell dysfunction was associated with decreased expression of cell maturity and proliferation markers specific to the beta cell such as Ins1, Ucn3, and Ki67 and increased expression of Id1-4, Hes-1, and Hey-1. The top 30 most regulated proteins significantly correlated with corresponding mRNA expression. BMP-2-induced gene expression changes were associated with a predominant reduction in acetylation of H3K27 and a decrease in NeuroD1 chromatin binding activity. These results show that BMP-2 induces loss of beta cell maturity and suggest that remodeling of H3K27ac and decreased NeuroD1 DNA binding activity participate in the effect of BMP-2 on beta cell dysfunction
Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in β-Cells
OBJECTIVE:Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells.RESEARCH DESIGN AND METHODS:Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis factor-alpha). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to investigate the role of Bad and Bax activation, respectively. [...
Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro.
The mitogenic effect of the hypothalamic peptides growth hormone-releasing factor (GRF) and somatostatin on cultured growth hormone (GH)-producing cells (somatotrophs) was studied. Using autoradiographic detection of [3H]thymidine uptake and immunocytochemical identification of GH-producing cells, we show that 5 nM GRF causes a 20-fold increase in the percentage of somatotrophs labeled with [3H]thymidine. The total number of somatotrophs in GRF-treated cultures was increased by 60%. Somatostatin had no measurable effect on the labeling index by itself, but it partly inhibited the GRF-induced increase in both the labeling index and the total number of cells. Forskolin caused an increase in both the percentage of somatotrophs with a [3H]thymidine-labeled nucleus and the somatotroph number similar to that caused by GRF. GH secretion as well as cellular GH content in the GRF- or forskolin-treated cells increased with culture time over the entire period, whereas secretion and content of GH gradually decreased in control or somatostatin-treated cultures during the entire culture period. These data suggest that GRF and somatostatin regulate the mitotic activity of GH-producing cells and that the effect of GRF is possibly mediated by cyclic AMP
- …