448 research outputs found

    ATMOSPHERIC EFFECTS ON RTK NETWORK IN FLORIDA

    Get PDF
    Commonly used real time kinematic (RTK) network (RTK Network) techniques, i.e., MAX, I-MAX, FKP and VRS, are tested by taking monthly measurements for a year in Florida. Additionally, RTCM message versions 2 and 3 are used with I-MAX and VRS measurements. The results revealed that mostly, horizontal coordinates vary a few centimeters and generally changes in vertical coordinates are less than two decimeters. In terms of horizontal coordinates, the best results are produced by I-MAX3 method and FKP yielded the worst results. In terms of vertical coordinates, almost all results look alike; however, the best results are produced by VRS3 method. It appears that I-MAX3 performed better than I-MAX2 and VRS3 performed better than VRS2. Yet, MAX did not stand out among other techniques

    Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection

    Get PDF
    We investigate spin conductance in zigzag graphene nanoribbons and propose a spin injection mechanism based only on graphitic nanostructures. We find that nanoribbons with atomically straight, symmetric edges show zero spin conductance, but nonzero spin Hall conductance. Only nanoribbons with asymmetrically shaped edges give rise to a finite spin conductance and can be used for spin injection into graphene. Furthermore, nanoribbons with rough edges exhibit mesoscopic spin conductance fluctuations with a universal value of rmsGs≈0.4e/4π\mathrm{rms} G_\mathrm{s}\approx 0.4 e/4\pi.Comment: 4 pages, 5 figures, PdfLaTeX, accepted for publication in Physical Review Letter

    The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion

    Get PDF
    Background: Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Methods: Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). Results: There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). Conclusion: We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion. Š 2015 Ozban et al.; licensee BioMed Central

    Differentiating instruction:Understanding the key elements for successful teacher preparation and development

    Get PDF
    Primary and secondary school teachers are expected to adapt their teaching to the diverse educational needs of students through differentiated instruction (DI). This review included 29 peer-reviewed published articles from 2010 to 2020 evaluating the contribution of preservice and in-service teacher programs for DI. We synthesized program components, outcomes and contextual interplay. Results indicate that successful programs incorporate active learning, collaboration and reflection and were often longitudinal, comprehensive and addressed attitudes, knowledge and skills. Contextual (school) factors acted as facilitators and impediments to program efficacy. Balancing school ambitions with realistic expectations is a concern. Educational and policy implications are further discussed.</p

    Revealing Sub-Surface Vibrational Modes by Atom-Resolved Damping Force Spectroscopy

    Full text link
    We propose to use the damping signal of an oscillating cantilever in dynamic atomic force microscopy as a noninvasive tool to study the vibrational structure of the substrate. We present atomically resolved maps of damping in carbon nanotube peapods, capable of identifying the location and packing of enclosed Dy@C82 molecules as well as local excitations of vibrational modes inside nanotubes of different diameter. We elucidate the physical origin of damping in a microscopic model and provide quantitative interpretation of the observations by calculating the vibrational spectrum and damping of Dy@C82 inside nanotubes with different diameters using ab initio total energy and molecular dynamics calculations.Comment: 4 pages, 3 figures, to be published in Phys. Rev. Lett

    The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF) is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo.</p> <p>Methods</p> <p>For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis.</p> <p>Results</p> <p>Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this effect. Moreover, antalarmin suppressed neoangiogenesis in 4T1 tumors in vivo.</p> <p>Conclusion</p> <p>This is the first report demonstrating that peripheral CRF, at least in part, mediates the tumor-promoting effects of stress and implicates CRF in SMAD2 and β-catenin expression.</p

    Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids?

    Get PDF
    Background: Nanofluids are suspensions of nanoparticles and fibers which have recently attracted much attention because of their superior thermal properties. Nevertheless, it was proven that, due to modest dispersion of nanoparticles, such high expectations often remain unmet. In this article, by introducing the notion of nanofin, a possible solution is envisioned, where nanostructures with high aspect-ratio are sparsely attached to a solid surface (to avoid a significant disturbance on the fluid dynamic structures), and act as efficient thermal bridges within the boundary layer. As a result, particles are only needed in a small region of the fluid, while dispersion can be controlled in advance through design and manufacturing processes. Results: Toward the end of implementing the above idea, we focus on single carbon nanotubes to enhance heat transfer between a surface and a fluid in contact with it. First, we investigate the thermal conductivity of the latter nanostructures by means of classical non-equilibrium molecular dynamics simulations. Next, thermal conductance at the interface between a single wall carbon nanotube (nanofin) and water molecules is assessed by means of both steady-state and transient numerical experiments. Conclusions: Numerical evidences suggest a pretty favorable thermal boundary conductance (order of 107 W¡m-2¡K-1) which makes carbon nanotubes potential candidates for constructing nanofinned surface

    Modeling Vesicle Traffic Reveals Unexpected Consequences for Cdc42p-Mediated Polarity Establishment

    Get PDF
    SummaryBackgroundPolarization in yeast has been proposed to involve a positive feedback loop whereby the polarity regulator Cdc42p orients actin cables, which deliver vesicles carrying Cdc42p to the polarization site. Previous mathematical models treating Cdc42p traffic as a membrane-free flux suggested that directed traffic would polarize Cdc42p, but it remained unclear whether Cdc42p would become polarized without the membrane-free simplifying assumption.ResultsWe present mathematical models that explicitly consider stochastic vesicle traffic via exocytosis and endocytosis, providing several new insights. Our findings suggest that endocytic cargo influences the timing of vesicle internalization in yeast. Moreover, our models provide quantitative support for the view that integral membrane cargo proteins would become polarized by directed vesicle traffic given the experimentally determined rates of vesicle traffic and diffusion. However, such traffic cannot effectively polarize the more rapidly diffusing Cdc42p in the model without making additional assumptions that seem implausible and lack experimental support.ConclusionsOur findings suggest that actin-directed vesicle traffic would perturb, rather than reinforce, polarization in yeast
    • …
    corecore