19 research outputs found

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    Evolution of neonatal and pediatric critical care in India

    No full text
    During the last decade, the disciplines of neonatal and pediatric critical care have rapidly progressed in India. The growth of Neonatal Intensive Care has paced the growth of Pediatric Critical Care. The substantial growth of discipline and the positive improvements in neonatal outcomes are the results of the concerted efforts of the National Neonatal Forum and commitment of expatriate physicians residing in the United States. This article provides the background information regarding perinatal, neonatal, and infant mortalities in India. It also describes the maternal child health care delivery system in the Indian subcontinent

    Probing the Role of Backbone Hydrogen Bonds in Protein-Peptide Interactions by Amide-to-Ester Mutations

    No full text
    One of the most frequent protein-protein interaction modules in mammalian cells is the postsynaptic density 95/discs large/zonula occludens 1 (PDZ) domain, involved in scaffolding and signaling and emerging as an important drug target for several diseases. Like many other protein-protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as beta-strands to form an extended antiparallel beta-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the, amino acid side chains of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, Delta Delta G = 1.3 to >3.8 kcal mol(-1)). This decrease in affinity was mainly due to an increase in the dissociation rate constant, but a significant decrease in the association rate constant was found for some amide-to-ester mutations Suggesting that native hydrogen bonds have begun to form in the transition state of the binding reaction. This study provides a general framework for studying the role of backbone hydrogen bonds in protein-peptide interactions and for the first time specifically addresses these for PDZ domain-peptide interactions

    Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling

    No full text
    The polypyrimidine tract binding protein (PTB) is a 58 kDa protein involved in many aspects of RNA metabolism. In this study, we focused our attention on the structure of the two C-terminal RNA recognition motifs (RRM3 and RRM4) of PTB. In a previous study, it was found that the two RRMs are independent in the free state. We recently determined the structure of the same fragment in complex with RNA and found that the two RRMs interact extensively. This difference made us re-evaluate in detail the free protein structure and in particular the interdomain interface. We used a combination of NMR spectroscopy and segmental isotopic labeling to unambiguously study and characterize the interdomain interactions. An improved segmental isotopic labeling protocol was used, enabling us to unambiguously identify 130 interdomain NOEs between the two RRMs and to calculate a very precise structure. The structure reveals a large interdomain interface, resulting in a very unusual positioning of the two RRM domains relative to one another
    corecore