35 research outputs found

    Prediction-Based Control of Linear Systems by Compensating Input-Dependent Input Delay of Integral-Type

    No full text
    International audienceThis study addresses the problem of delay compensation via a predictor-based output feedback for a class of linear systems subject to input delay which itself depends on the input. The equation defining the delay is implicit and involves past values of the input through an integral relation, the kernel of which is a polynomial function of the input. This modeling represents systems where transport phenomena take place at the inlet of a system involving a nonlinearity, which frequently occurs in the processing industry. The conditions of asymptotic stabilization require the magnitude of the feedback gain to comply with the initial conditions. Arguments for the proof of this novel result include general Halanay inequalities for delay differential equations and take advantage of recent advances in backstepping techniques for uncertain or varying delay systems

    Robust Stabilization of Nonlinear Globally Lipschitz Delay Systems

    No full text
    International audienceThis paper studies the application of a recently proposed control scheme to globally Lipschitz nonlinear systems for which the input is delayed and applied with zero order hold, the measurements are sampled and delayed, and only an output is measured (i.e., the state vector is not available). The control scheme consists of an observer for the delayed state vector, an inter-sample predictor for the output signal, an approximate predictor for the future value of the state vector, and the nominal feedback law applied with zero order hold and computed for the predicted value of the future state vector. The resulting closed-loop system is robust with respect to modeling and measurement errors and robust to perturbations of the sampling schedule
    corecore