242 research outputs found

    Perturbative approach to the nonlinear saturation of the tearing mode for any current gradient

    Full text link
    Within the traditional frame of reduced MHD, a new rigorous perturbation expansion provides the equation ruling the nonlinear growth and saturation of the tearing mode for any current gradient. The small parameter is the magnetic island width w. For the first time, the final equation displays at once terms of order w ln(1/w) and w which have the same magnitude for practical purposes; two new O(w) terms involve the current gradient. The technique is applicable to the case of an external forcing. The solution for a static forcing is computed explicitly and it exhibits three physical regimes.Comment: 4 pages, submitted to Physical Review Letter

    Influence of higher-order harmonics on the saturation of the tearing mode

    Full text link
    The nonlinear saturation of the tearing mode is revisited in slab geometry by taking into account higher-order harmonics in the outer solution. The general formalism for tackling this problem in the case of a vanishing current gradient at the resonant surface is derived. It is shown that, although the higher-order harmonics lead to corrections in the final saturation equation, they are of higher order in the perturbation parameter, which provides a formal proof that the standard one-harmonic approach is asymptotically correct.Comment: Accepted to Plasma Physics and Controlled Fusio

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Temperature effect on the electron emission yield of BN-SI02 under electron irradiation

    No full text
    International audienceWe report measurement of electron-emission yield under the impact of electrons on BN–SiO 2 . The effect of the temperature on the yield of BN–SiO2 is investigated. It is found that, the electron emission drop significantly when the temperature is increased from 22°c to 400°C. The representativeness of EEY measurements on ceramics at room temperature and that not suffered from the specific environment of a Hall Thruster (elevate temperature, electron and ion bombardment) is thereafter discussed
    • …
    corecore