121 research outputs found

    The effect of preventive, therapeutic and protective exercises on hippocampal memory mediators in stressed rats

    Get PDF
    Background: Exercise plays a significant role in learning and memory. The present study focuses on the hippocampal corticosterone (CORT), interleukin-1 beta(IL-1β), glucose, and brain derived neurotrophic factor (BDNF) levels in preventive, therapeutic, and protective exercises in stressful conditions. Methods: Forty male rats were randomly divided into four groups: the control group and the preventive, therapeutic, and protective exercise groups. The treadmill running was applied at a speed of 20-21m/min and a chronic stress of 6 hours/day for 21 days. Subsequently, the variables were measured in the hippocampus. Results: The findings revealed that the hippocampal CORT levels in the preventive exercise group had a significant enhancement compared to the control group. In the protective and particularly the therapeutic exercise groups, the hippocampal CORT levels declined. Furthermore, the hippocampal BDNF levels in the preventive and the therapeutic exercise groups indicated significantly decreased and increased, respectively, in comparison with the control group. In the preventive exercise group, however, the hippocampal glucose level turned out to be substantially higher than that in the control group. Conclusion: It appears that the therapeutic exercise group had the best exercise protocols for improving the hippocampal memory mediators in the stress conditions. By contrast, the preventive exercise group could not improve these mediators that had been altered by stress. It is suggested that exercise time, compared to stress, can be considered as a crucial factor in the responsiveness of memory mediators. � Penerbit Universiti Sains Malaysia, 2016

    Are there neurological symptoms in type 1 of gaucher disease?

    Get PDF
    Objective Gaucher disease (GD) is a rare inborn error of metabolism, classified as a lipid storage disorders. This disease is caused by a deficiency in glucocerebrosidase enzyme. It has been classified according to the presence or absence of neurological symptoms into the following types: type 1 non-neuropathic, type 2 acute infantile neuropathic and type 3 or chronic neuropathic. We evaluated neurological symptoms in patients with GD1 and GD3 and compared both of these groups. Materials & Methods Eleven patients were identified according to their clinical presentation and the presence of disease confirmed by genetic testing, from 2006-2016, at the Mofid Children Hospital Clinic, Tehran, Iran. We included eight patients with GD 1 and three patients with GD3. Careful neurological examination was performed on these patients during treatment by pediatric neurologist. Results Patients with GD1 had some neurological symptoms including cognitive impairment, developmental disability, behavioral disorder, microcephaly and increased deep tendon reflexes (DTR). Of course, neurological signs in patients with type 3 of GD were different and were included seizures, supranuclear gaze palsy, cerebellar signs, and ataxia. Conclusion The current nomenclature for 3 types of Gaucher disease does not meet all clinical symptoms. Patients with GD1 display many neurological deficits in young ages not reported adequately earlier. © 2018, Iranian Child Neurology Society. All rights reserved

    The Nomogram of Clitoral Length and Width in Iranian Term and Preterm Neonates

    Get PDF
    Background and Objectives: Clitoromegaly is an important parameter in the evaluation of ambiguous genitalia in neonates, but the normative data for clitoral size in newborns have racial/ethnic differences. The present study aimed to determine clitoral length (CL) and clitoral width (CW) values and establish cutoff measurement to define clitoromegaly in both term and preterm Iranian neonates for the first time. Methods: A total number of 580 female newborn infants delivered at 28�42 weeks of gestation were enrolled in the study, and their CL and CW were measured on the first 72 h of birth. Data about birth weight (BW), body length (BL), and head circumference (HC) of newborns; mothers' age; and gestational age (GA) were recorded, too. Results were presented as mean ± standard deviation (SD) for quantitative variables and were summarized by frequency (percentage) for categorical variables. Backward stepwise regression analysis was used for prediction of CL and CW. Results: Among 580 Iranian female newborns studied, 187 were term neonates and the other 393 newborns were preterm. Mean ± SD values of CL were 6.11 ± 0.39 mm in term infants and 5.45 ± 0.64 mm in preterm infants (P < 0.001). Mean ± SD values of CW were 4.22 ± 0.43 in term infants and 3.68 ± 0.53 in preterm infants (P < 0.001). Regression analysis showed that CL was correlated with GA considered by last menstrual period, BL, BW, and HC; and CW was associated with GA, BL, and BW. Conclusion: This study suggests normative values (mean + 1, 2, and 3 SD) of CL and CW according to GA, which can be used as a reference for Middle East's newborns, especially Iranian newborn babies. © Copyright © 2020 Alaei, Rohani, Norouzi, Hematian Boroujeni, Tafreshi, Salehiniya and Soheilipour

    Devil's staircase transition of the electronic structures in CeSb

    Full text link
    Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil's staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magnetostructures sequentially appear below the Neel temperature. An evolution of the low-energy electronic structure going through the devil's staircase is of special interest, which has, however, been elusive so far despite the 40-years of intense researches. Here we use bulk-sensitive angle-resolved photoemission spectroscopy and reveal the devil's staircase transition of the electronic structures. The magnetic reconstruction dramatically alters the band dispersions at each transition. We moreover find that the well-defined band picture largely collapses around the Fermi energy under the long-periodic modulation of the transitional phase, while it recovers at the transition into the lowest-temperature ground state. Our data provide the first direct evidence for a significant reorganization of the electronic structures and spectral functions occurring during the devil's staircase.Comment: 22 pages, 5 figure

    An ontological framework for cooperative games

    Get PDF
    Social intelligence is an emerging property of a system composed of agents that consists of the ability of this system to conceive, design, implement and execute strategies to solve problems and thus achieve a collective state of the system that is concurrently satisfactory for all and each one of the agents that compose it. In order to make decisions when dealing with complex problems related to social systems and take advantage of social intelligence, cooperative games theory constitutes the standard theoretical framework. In the present work, an ontological framework for cooperative games modeling and simulation is presented

    Modeling double strand break susceptibility to interrogate structural variation in cancer

    Get PDF
    Abstract Background Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). Results We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. Conclusions We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors

    Localization and Superconductivity in Doped Semiconductors

    Full text link
    Motivated by the discovery of superconductivity in boron-doped (B-doped) diamond, we investigate the localization and superconductivity in heavily doped semiconductors. The competition between Anderson localization and s-wave superconductivity is investigated from the microscopic point of view. The effect of microscopic inhomogeneity and the thermal fluctuation in superconductivity are taken into account using the self-consistent 1-loop-order theory with respect to superconducting fluctuation. The crossover from superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. We show that superconductor-insulator transition (SIT) accompanies the crossover. We point out an enhancement of Cooper pairing in the crossover regime. Further localization of the electron wave function gives rise to incoherent Cooper pairs and the pseudogap above T_c. A global phase diagram is drawn for host band superconductivity, impurity band superconductivity, Anderson localization, Fermi liquid state, and pseudogap state. A theoretical interpretation is proposed for superconductivity in the doped diamond, SiC, and Si.Comment: Final version for publication. To appear in J. Phys. Soc. Jpn. (2009) No.
    corecore