498 research outputs found
Transmission resonances and supercritical states in a one dimensional cusp potential
We solve the two-component Dirac equation in the presence of a spatially one
dimensional symmetric cusp potential. We compute the scattering and bound
states solutions and we derive the conditions for transmission resonances as
well as for supercriticality.Comment: 10 pages. Revtex 4. To appear in Phys Rev.
Finite temperature dynamics of vortices in the two dimensional anisotropic Heisenberg model
We study the effects of finite temperature on the dynamics of non-planar
vortices in the classical, two-dimensional anisotropic Heisenberg model with
XY- or easy-plane symmetry. To this end, we analyze a generalized
Landau-Lifshitz equation including additive white noise and Gilbert damping.
Using a collective variable theory with no adjustable parameters we derive an
equation of motion for the vortices with stochastic forces which are shown to
represent white noise with an effective diffusion constant linearly dependent
on temperature. We solve these stochastic equations of motion by means of a
Green's function formalism and obtain the mean vortex trajectory and its
variance. We find a non-standard time dependence for the variance of the
components perpendicular to the driving force. We compare the analytical
results with Langevin dynamics simulations and find a good agreement up to
temperatures of the order of 25% of the Kosterlitz-Thouless transition
temperature. Finally, we discuss the reasons why our approach is not
appropriate for higher temperatures as well as the discreteness effects
observed in the numerical simulations.Comment: 12 pages, 8 figures, accepted for publication in European Physical
Journal B (uses EPJ LaTeX
Dynamics and stability of Bose-Einstein solitons in tilted optical lattices
Bloch oscillations of Bose-Einstein condensates realize sensitive matter-wave
interferometers. We investigate the dynamics and stability of bright-soliton
wave packets in one-dimensional tilted optical lattices with a modulated
mean-field interaction . By means of a time-reversal argument, we prove
the stability of Bloch oscillations of breathing solitons that would be
quasistatically unstable. Floquet theory shows that these breathing solitons
can be more stable against certain experimental perturbations than rigid
solitons or even non-interacting wave packets.Comment: final, published versio
Stability and decay of Bloch oscillations in presence of time-dependent nonlinearity
We consider Bloch oscillations of Bose-Einstein condensates in presence of a
time-modulated s-wave scattering length. Generically, interaction leads to
dephasing and decay of the wave packet. Based on a cyclic-time argument, we
find---additionally to the linear Bloch oscillation and a rigid soliton
solution---an infinite family of modulations that lead to a periodic time
evolution of the wave packet. In order to quantitatively describe the dynamics
of Bloch oscillations in presence of time-modulated interactions, we employ two
complementary methods: collective-coordinates and the linear stability analysis
of an extended wave packet. We provide instructive examples and address the
question of robustness against external perturbations.Comment: 15 pages, 8 figures. Slightly amended final versio
Three-dimensional effects on extended states in disordered models of polymers
We study electronic transport properties of disordered polymers in the
presence of both uncorrelated and short-range correlated impurities. In our
procedure, the actual physical potential acting upon the electrons is replaced
by a set of nonlocal separable potentials, leading to a Schr\"odinger equation
that is exactly solvable in the momentum representation. We then show that the
reflection coefficient of a pair of impurities placed at neighboring sites
(dimer defect) vanishes for a particular resonant energy. When there is a
finite number of such defects randomly distributed over the whole lattice, we
find that the transmission coefficient is almost unity for states close to the
resonant energy, and that those states present a very large localization
length. Multifractal analysis techniques applied to very long systems
demonstrate that these states are truly extended in the thermodynamic limit.
These results reinforce the possibility to verify experimentally theoretical
predictions about absence of localization in quasi-one-dimensional disordered
systems.Comment: 16 pages, REVTeX 3.0, 5 figures on request from FDA
([email protected]). Submitted to Phys. Rev. B. MA/UC3M/09/9
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Photonic analogues of the relativistic Kronig-Penney model and of
relativistic surface Tamm states are proposed for light propagation in fibre
Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in
the FBG realizes the relativistic Kronig-Penney model, the band structure of
which being mapped into the spectral response of the FBG. For the semi-infinite
FBG Tamm surface states can appear and can be visualized as narrow resonance
peaks in the transmission spectrum of the grating
Exciton Optical Absorption in Self-Similar Aperiodic Lattices
Exciton optical absorption in self-similar aperiodic one-dimensional systems
is considered, focusing our attention on Thue-Morse and Fibonacci lattices as
canonical examples. The absorption line shape is evaluated by solving the
microscopic equations of motion of the Frenkel-exciton problem on the lattice,
in which on-site energies take on two values, according to the Thue-Morse or
Fibonacci sequences. Results are compared to those obtained in random lattices
with the same stechiometry and size. We find that aperiodic order causes the
occurrence of well-defined characteristic features in the absorption spectra
which clearly differ from the case of random systems, indicating a most
peculiar exciton dynamics. We successfully explain the obtained spectra in
terms of the two-center problem. This allows us to establish the origin of all
the absorption lines by considering the self-similar aperiodic lattices as
composed of two-center blocks, within the same spirit of the renormalization
group ideas.Comment: 16 pages in REVTeX 3.0. 2 figures on request to F. D-A
([email protected]
Spatial distribution of vacancy defects in GaP wafers
Cathodoluminescencescanning electron microscopy and positron annihilation techniques have been used to investigate the distribution of defects in GaP wafers. The results show the existence of a gradient of the concentration of vacancy‐type defects along the wafer diameter, which causes inhomogeneity in the emission. Dislocation density and vacancy concentration profiles have been compared
Delocalization of states in two component superlattices with correlated disorder
Electron and phonon states in two different models of intentionally
disordered superlattices are studied analytically as well as numerically. The
localization length is calculated exactly and we found that it diverges for
particular energies or frequencies, suggesting the existence of delocalized
states for both electrons and phonons. Numerical calculations for the
transmission coefficient support the existence of these delocalized states.Comment: RevTeX, 12 pages, 2 PS figures adde
Electron dynamics in intentionally disordered semiconductor superlattices
We study the dynamical behavior of disordered quantum-well-based
semiconductor superlattices where the disorder is intentional and short-range
correlated. We show that, whereas the transmission time of a particle grows
exponentially with the number of wells in an usual disordered superlattice for
any value of the incident particle energy, for specific values of the incident
energy this time increases linearly when correlated disorder is included. As
expected, those values of the energy coincide with a narrow subband of extended
states predicted by the static calculations of Dom\'{\i}nguez-Adame {\em et
al.} [Phys. Rev. B {\bf 51}, 14 ,359 (1994)]; such states are seen in our
dynamical results to exhibit a ballistic regime, very close to the WKB
approximation of a perfect superlattice. Fourier transform of the output signal
for an incident Gaussian wave packet reveals a dramatic filtering of the
original signal, which makes us confident that devices based on this property
may be designed and used for nanotechnological applications. This is more so in
view of the possibility of controllingthe outp ut band using a dc electric
field, which we also discuss. In the conclusion we summarize our results and
present an outlook for future developments arising from this work.Comment: 10 pagex, RevTex, 13 Postscript figures. Physical Review B (in press
- …
