3,241 research outputs found
Geometrical construction of quantum groups representations
We describe geometrically the classical and quantum inhomogeneous groups
G_0=(SL(2, \BbbC)\triangleright \BbbC^2) and G_1=(SL(2, \BbbC)\triangleright
\BbbC^2)\triangleright \BbbC by studying explicitly their shape algebras as a
spaces of polynomial functions with a quadratic relations.Comment: 16 pages, 1 figur
Grains charges in interstellar clouds
The charge of cosmic grains could play an important role in many astrophysical phenomena. It probably has an influence on the coagulation of grains and more generally on grain-grain collisions, and on interaction between charged particles and grains which could lead to the formation of large grains or large molecules. The electrostatic charge of grains depends mainly on the nature of constitutive material of the grain and on the physical properties of its environment: it results from a delicate balance between the plasma particle collection and the photoelectron emission, both of them depending on each other. The charge of the grain is obtained in two steps: (1) using the numerical model the characteristics of the environment of the grain are computed; (2) the charge of a grain which is embedded in this environment is determined. The profile of the equilibrium charge of some typical grains through different types of interstellar clouds is obtained as a function of the depth of the cloud. It is shown that the grain charge can reach high values not only in hot diffuse clouds, but also in clouds with higher densities. The results are very sensitive to the mean UV interstellar radiation field. Three parameters appear to be essential but with different levels of sensitivity of the charge: the gas density, the temperature, and the total thickness of the cloud
Ergodic and Nonergodic Anomalous Diffusion in Coupled Stochastic Processes
Inspired by problems in biochemical kinetics, we study statistical properties
of an overdamped Langevin process whose friction coefficient depends on the
state of a similar, unobserved process. Integrating out the latter, we derive
the long time behaviour of the mean square displacement. Anomalous diffusion is
found. Since the diffusion exponent can not be predicted using a simple scaling
argument, anomalous scaling appears as well. We also find that the coupling can
lead to ergodic or non-ergodic behaviour of the studied process. We compare our
theoretical predictions with numerical simulations and find an excellent
agreement. The findings caution against treating biochemical systems coupled
with unobserved dynamical degrees of freedom by means of standard, diffusive
Langevin descriptions
Simulation of Hydrogen Generation from Methane Partial Oxidation in a Plasma Fuel Reformer
A model for the chemistry in a plasma fuel reformer or plasmatron has been developed. The plasma fuel reformer is set up to produce syngas (hydrogen and carbon monoxide gas mixture) from partial oxidation of hydrocarbons. The behavior of methane as fuel has been investigated to characterize and simulate the plasmatron performance. The goal of this work has been improved understanding of the physical/chemical processes within the reactor. The simulation tool used was CHEMKIN 3.7, using the GRI methane combustion mechanism. The Partially Stirred Reactor application (PASR) simulates random mixing by a frequency mixing parameter, which is directly dependant of the system fluid dynamic properties. The fuel reformer was designed as a reactor where combustion is initiated by an electric discharge due to ohmic heating of the arc region. From discharge observations, energy estimations and model simulations, it was found that the electric arc initiates combustion by locally raising the temperature and then propagating the reaction by heat and mass transfer/mixing to the surroundings. Simulation results demonstrated that there is an optimum characteristic mixing time for each residence time, depending on the initial temperature reached at the arc. It was also found that for given power input into the system, the more spread the energy is, or the more mass is heated to a moderate temperature, the better the calculated performance
Ambipolar Nernst effect in NbSe
The first study of Nernst effect in NbSe reveals a large quasi-particle
contribution with a magnitude comparable and a sign opposite to the vortex
signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall
and Nernst coefficients, we argue that this large Nernst signal originates from
the thermally-induced counterflow of electrons and holes and indicates a
drastic change in the electron scattering rate in the CDW state. The results
provide new input for the debate on the origin of the anomalous Nernst signal
in high-T cuprates.Comment: 5 pages including 4 figure
Spectropolarimetric observations of the Ca II 8498 A and 8542 A lines in the quiet Sun
The Ca II infrared triplet is one of the few magnetically sensitive
chromospheric lines available for ground-based observations. We present
spectropolarimetric observations of the 8498 A and 8542 A lines in a quiet Sun
region near a decaying active region and compare the results with a simulation
of the lines in a high plasma-beta regime. Cluster analysis of Stokes V profile
pairs shows that the two lines, despite arguably being formed fairly close,
often do not have similar shapes. In the network, the local magnetic topology
is more important in determining the shapes of the Stokes V profiles than the
phase of the wave, contrary to what our simulations show. We also find that
Stokes V asymmetries are very common in the network, and the histograms of the
observed amplitude and area asymmetries differ significantly from the
simulation. Both the network and internetwork show oscillatory behavior in the
Ca II lines. It is stronger in the network, where shocking waves, similar to
those in the high-beta simulation, are seen and large self-reversals in the
intensity profiles are common.Comment: 23 pages, 17 figures, accepted to ApJ some figures are low-res, for
high-res email [email protected]
Numerical Simulations of Shock Wave-Driven Jets
We present the results of numerical simulations of shock wave-driven jets in
the solar atmosphere. The dependence of observable quantities like maximum
velocity and deceleration on parameters such as the period and amplitude of
initial disturbances and the inclination of the magnetic field is investigated.
Our simulations show excellent agreement with observations, and shed new light
on the correlation between velocity and deceleration and on the regional
differences found in observations.Comment: 7 pages, 11 figures, submitted to Ap
Electromagnetic duality in general relativity
By resolving the Riemann curvature relative to a unit timelike vector into
electric and magnetic parts, we consider duality relations analogous to the
electromagnetic theory. It turns out that the duality symmetry of the Einstein
action implies the Einstein vacuum equation without the cosmological term. The
vacuum equation is invariant under interchange of active and passive electric
parts giving rise to the same vacuum solutions but the gravitational constant
changes sign. Further by modifying the equation it is possible to construct
interesting dual solutions to vacuum as well as to flat spacetimes.Comment: 18 pages, LaTEX versio
- …