9 research outputs found

    Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8 + T cells in skin

    Get PDF
    Tissue-resident memory T cells (T cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of T cells in skin. Ptpn2-deficient CD8 T cells displayed a marked defect in generating CD69 CD103 T cells in response to herpes simplex virus type 1 (HSV-1) skin infection. This was accompanied by a reduction in the proportion of KLRG1 memory precursor cells and a transcriptional bias toward terminal differentiation. Of note, forced expression of KLRG1 was sufficient to impede T cell formation. Normalizing memory precursor frequencies by transferring equal numbers of KLRG1− cells restored T generation, demonstrating that Ptpn2 impacted skin seeding with precursors rather than downstream T cell differentiation. Importantly, Ptpn2-deficient T cells augmented skin autoimmunity but also afforded superior protection from HSV-1 infection. Our results emphasize that KLRG1 repression is required for optimal T cell formation in skin and reveal an important role of Ptpn2 in regulating TRM cell functionality.K. Hochheiser was supported by the German Research Council (grant HO 5417/1-1) and is a Rhian and Paul Brazis Fellow in Translational Melanoma Immunology administered by the Peter MacCallum Cancer Foundation. T. Gebhardt is a Senior Biomedical Research Fellow supported by the Sylvia and Charles Viertel Charitable Foundatio

    Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients

    Get PDF
    How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases

    Transcriptional regulation and co-stimulatory signaling in antiviral T cell immunity

    Get PDF
    © 2018 Dr. Simone NüssingSpecial AT-rich binding protein-1 (SATB1) is a global chromatin organizer, promoting or repressing gene transcription in mice and human. In this PhD thesis, SATB1 expression was examined in humans across ages and tissues (Chapter 3). The molecular (Chapter 4) and functional (Chapter 5) role of SATB1 was investigated during anti-viral immunity in mice using an influenza (IAV) infection model. Additionally, the effect of CD27-mediated co-stimulation was studied in the context of HIV-1 infection (Chapter 6). SATB1 has pivotal roles during T cell development and maturation, with lineage fate decision in hematopoietic stem cells and gradual changes in SATB1 expression contributing to T cell development in the thymus in mice. In Chapter 3, SATB1 expression was analyzed across lymphocyte compartments from different human tissues and correlated with PD-1 expression in virus-specific CD8+ T cells. SATB1 expression in pediatric and adult donors showed that SATB1 expression was highest in the human thymus with differential expression levels from DN to DP thymocytes and down-regulation of SATB1 in peripheral T cells. Chapter 3 shows that SATB1 expression in the periphery is not static but follows fine-tuned expression dynamics with downregulation from naïve to antigen-specific CD8+ T cells, likely to be antigen- and tissue-dependent. These data led to the hypothesis that fine-tuned SATB1 expression is necessary for maintaining fate-potential in developing and mature, peripheral T cells. Several molecular mechanisms have been identified for gene regulation by SATB1 with wide-range impacts on the overall chromatin landscape. Previous studies in our laboratory showed that SATB1 mRNA levels are high in naïve, but low in effector CD8+ T cells. The impact of SATB1 in repressing transcriptional programs in naïve CD8+ T cells, prior to its downregulation in effector T cells, was addressed in Chapter 4 of this study. ChIP-Sequencing analysis was performed to decipher genomic binding sites of SATB1 in naïve and effector CD8+ T cells. SATB1 ChIP-Seq data demonstrated that SATB1 binding sites were predominately distal to transcriptional start sites, likely to harbor transcriptional enhancer sites, with reduced SATB1 binding sites in effector over naïve CD8+ T cells. To understand the effects of SATB1 on the transcriptional regulation in naïve and IAV-specific CD8+ T cells, SATB1 imposter mice (SATB1imp/imp) were used in this PhD study. In these mice, Satb1 contains a point mutation in the DNA-binding domain encoding position. SATB1 protein expression in SATB1imp/imp mice persists but is dysfunctional with reduced DNA-binding capability. CD8+ T cells from SATB1imp/imp mice showed up-regulation of certain gene profiles, especially at the naïve stage, such as Pdcd1, Ctla4 and Ccl5, characteristic of activated or exhausted T cells. In Chapter 5, an IAV infection model was used, to examine the effects of dysfunctional SATB1 in IAV-specific CD8+ T cell response generation. CD8+ T cell numbers were consistently reduced in SATB1imp/imp mice with significantly reduced IAV-specific CD8+ T cell numbers in lungs on d10 post-infection. SATB1imp/imp CD8+ T cells exhibited an early overexpression of PD-1 from the naïve stage and reduced polyfunctionality within IAV-specific SATB1imp/imp CD8+ T cells. Using a bone marrow chimera approach, in which mice were reconstituted with a mixture of wildtype and SATB1imp/imp-derived lymphocytes, data showed that reduced T cell numbers and PD-1 overexpression are T cell intrinsic in SATB1imp/imp mice. Immunotherapies, including anti-PD-1, anti-CD27 and histone deacetylase inhibitors, are often used in clinical trials to manipulate activation of T cells. In Chapter 6, we used CD27-mediated stimulation to understand the effect on CD4+ T cells with and without HIV-1 infection. CD27 is a co-stimulatory receptor of the TNF-family, expressed on naïve and central memory T cells. Non-permanent stimulation via CD27 leads to increased primary and memory antiviral CD8+ T cell responses in mice. Here, in humans, CD27-mediated stimulation of CD4+ T cells via its ligand CD70 exhibited profound activation potential in vitro, with high CD4+ T cell proliferation and GzmB production. To examine whether this high activation potential could trigger re-activation of viral transcription in latently infected CD4+ T cells, we re-stimulated CD4+ T cells with conventional α-CD28 or CD27-mediated co-stimulation in an in vitro latency model. Unexpectedly, re-stimulation via CD27 of CD4+ T cells led to reduced viral reactivation compared to α-CD28 stimulation of CD4+ T cells. However, similar transcriptional reactivation levels were obtained when CD4+ T cells isolated from HIV+ individuals on ART were re-stimulated with the two protocols. Strikingly, pre-stimulation of CD4+ T cells prior to in vitro HIV-1 infection showed a trend towards reduced HIV-DNA integration and overall infection. This suggests that CD27-mediated stimulation could lead to activation of antiviral mechanisms that reduces CD4+ T cells HIV-1 infection. Overall, this PhD study provides an in-depth understanding of the transcriptional and co-stimulatory regulations of T cell differentiation in response to viral infections. SATB1’s ability to regulate immune checkpoint molecules, such as PD-1 by its DNA-binding capability in antiviral immunity highlights its significance in future PD-1-related cancer and HIV-1 immunotherapy trials used to reverse T cell exhaustion

    The role of CD27 in anti-viral T-cell immunity

    Get PDF
    CD27 is a co-stimulatory immune-checkpoint receptor, constitutively expressed on a broad range of T-cells (αβ and γδ), NK-cells and B-cells. Ligation of CD27 with CD70 results in potent co-stimulatory effects. In mice, co-stimulation of CD8+ T-cells through CD27 promotes immune activation and enhances primary, secondary, memory and recall responses towards viral infections. Limited in vitro human studies support mouse experiments and show that CD27 co-stimulation enhances antiviral T-cell immunity. Given the potent co-stimulatory effects of CD27, manipulating CD27 signalling is of interest for viral, autoimmune and anti-tumour immunotherapies. This review focuses on the role of CD27 co-stimulation in anti-viral T-cell immunity and discusses clinical studies utilising the CD27 co-stimulation pathway for anti-viral, anti-tumour and autoimmune immunotherapy

    SATB1 ensures appropriate transcriptional programs within naïve CD8+ T cells

    No full text
    Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage–specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.</p

    Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8<sup>+</sup> T Cell-Lineage-Specific Function

    Get PDF
    Summary: Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation. : Russ et al. demonstrate that a subset of poised transcriptional enhancers found in naive virus-specific CD8+ T cells acquire a non-canonical chromatin signature upon differentiation. These data provide the genomic location for T cell lineage-specific transcription factor binding that is necessary for virus-specific T cell differentiation. Keywords: CD8+ T cell, influenza, chromatin, epigenetics, transcription facto

    Divergent SATB1 expression across human life span and tissue compartments

    Get PDF
    Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8 + T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections
    corecore