The role of CD27 in anti-viral T-cell immunity

Emma J. Grant^{1, 2*}, Simone Nüssing^{1*}, Sneha Sant¹, E Bridie Clemens^{1#} and Katherine Kedzierska^{1#}

¹Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, Australia; ²Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; *equal contribution; [#]equal contribution.

To whom correspondence should be addressed:

#Katherine Kedzierska, <u>kkedz@unimelb.edu.au</u>, Department of Microbiology and Immunology, University of Melbourne, Vic 3010, Australia, Ph: (613) 8344 7962.

Abstract

CD27 is a co-stimulatory immune-checkpoint receptor, constitutively expressed on a broad range of T-cells ($\alpha\beta$ and $\gamma\delta$), NK cells and B-cells. Ligation of CD27 with CD70 results in potent co-stimulatory effects. In mice, co-stimulation of CD8⁺ T-cells through CD27 promotes immune activation and enhances primary, secondary, memory and recall responses towards viral infections. Limited *in vitro* human studies support mouse experiments and show that CD27 co-stimulation enhances antiviral T-cell immunity. Given the potent co-stimulatory effects of CD27, manipulating CD27 signalling is of interest for viral, autoimmune and anti-tumour immunotherapies. This review focuses on the role of CD27 co-stimulation pathway for anti-viral, anti-tumour and autoimmune immunotherapy.

Keywords:

CD27, CD70, anti-viral immunity, co-stimulation, T-cells, immunotherapy

Introduction

CD27 is a receptor of the tumor necrosis factor (TNF) superfamily, expressed on a broad range of lymphocytes, including T-cells ($\alpha\beta$ and $\gamma\delta$) [1-3], B-cells [4-6] and natural killer (NK)-cells [7,8]. In T-cells, binding of CD27 to its ligand CD70 results in activation of both canonical and alternative NFkB pathways [9,10] that mediate signalling and downstream co-stimulatory effects and provide potent enhancement of T-cell responses [11,12]. CD27 co-stimulation promotes immune responses and enhances primary, secondary, memory and recall CD8⁺ T-cell responses towards acute viral infections in murine models [10,13]. However, the role of CD27 in human lymphocytes is understudied. Due to its strong co-stimulatory effects, the CD27/CD70 pathway has recently gained interest as an immunotherapeutic target for anti-viral immunity. Manipulation of this pathway may also be beneficial for the control of autoimmune diseases or tumour immunotherapy. This review summarizes the impact of CD27 co-stimulation in anti-viral T-cell immunity and discusses its potential for immunotherapies.

CD27 expression and its potent role in T-cell activation

(i) Optimal T-cell activation requires 3 signals

Following thymic selection, naive circulating T-cells survey for foreign antigens displayed by professional antigen presenting cells (APCs), mainly dendritic cells (DCs) [14]. During infection, DCs acquire antigens, either through direct infection or uptake of material from infected tissues, become activated and migrate to secondary lymphoid tissues where they present pathogen-derived peptides to circulating T-cells. DCs typically require an initial interaction with antigen-specific helper CD4⁺ T-cells [15,16] before they are licensed to activate naïve CD8⁺ T-cells [16,17]). Effective activation of naïve CD8⁺ T-cells by licensed DCs requires three distinct signals [18,19]. CD8⁺ T-cells recognize the pMHCI complex through use of their T-cell receptors (TCRs) to provide the first signal [20]. The second signal is provided by co-stimulation via the interaction of TNF-TNFR family receptors [21] and CD28-CD80/86 [22] on the CD8⁺ T-cell and DCs [19,23]. Lastly, pro-inflammatory cytokines (mainly IL-12 and Type I IFN) present in the environment during priming provide a third signal that can influence subsequent T-cell differentiation pathways to ensure a productive response [24]. The presence of all three signals activates a

cascade of signalling pathways, culminating in the activation and translocation of NF κ B to the nucleus of T-cells [25]. This induces T-cell proliferation and differentiation, resulting in the acquisition of effector functions and modification of cell surface markers, including cytokine/chemokine receptors and integrins that enable migration to the site of infection [26].

(ii) The role of CD27 co-stimulation in T-cell activation

While studies to date have focused predominantly on co-stimulation via CD28, more recently the role of CD27 co-stimulation in T-cell activation has been acknowledged [9,13]. CD27, first characterised by van Lier et al [27] in 1987, is a co-stimulatory molecule in both mice [28] and humans [27,29]. It is a transmembrane homodimer of the TNFR family [9,30,31], constitutively expressed on the surface of progenitor and naïve T-cells, as well as subsets of NK- and B-cells [9]. Its ligand, CD70, is inducible on APCs, DCs [32], B cells (triggered by TLR4/9, IFNy and CD40) and T-cells (following TCR interactions in the presence of CD28 cross-linking) and is constitutively expressed on smooth muscle cells [9]. Following the interaction between CD27 and CD70, TNFR-associated factor (TRAFs) adaptors are recruited [33], which then activate $CD8^+$ T-cells through both canonical and alternative NF κ B pathways [9,10]. The CD27-CD70 interaction also induces the up-regulation of antiapoptotic molecules (BCL-XL) [34] and cytokine receptors (IL-2R α and IL-12R β), thus increasing CD8⁺ T-cell sensitivity to cytokines [9]. This interaction facilitates activation of JuN N-terminal kinase (JNK), activator protein 1 (Ap1), eRK and mitogen activated protein (MAP) kinases to promote cytokine production including: IL-2, IL-4, IL-5, IL-6, IL-12, IFNy and TNFa [9]. CD27 expression on T-cells increases following activation and is accompanied by release of a soluble extracellular part of the molecule [35]. Loss of CD27 expression on T-cells is observed during prolonged stimulation and is associated with fully a differentiated effector phenotype.

CD27 co-stimulation enhances antiviral T-cell immunity

Analyses in mice suggest that co-stimulation through CD27 is important during T-cell development [36], primary activation [11,37*-41], transition into memory [11,37*,42], secondary recall and the long-term survival of T-cells [13,31] (summarised in Figure 1 and Table 1). Gravestein *et al* [36] observed CD27

expression on thymocytes during the double negative (DN) stage of development and using RAG^{-/-} mice showed that blocking CD27 co-stimulation with a mAb decreased the transition of DN to double positive (DP) thymocytes, thus revealing that CD27 co-stimulation is important in T-cell development.

(*i*) CD27 co-stimulation enhances primary anti-viral CD8⁺ T-cell responses

Published evidence reveals the importance of CD27 co-stimulation during primary viral infection (Table 1). Willoughby et al [37*] and Rowley et al [11] adoptively transferred OT-1 CD8⁺ T-cells into naïve mice and activated them with OVA peptide in the presence of a CD27-agonist antibody. Augmented CD27 co-stimulation increased the expansion of epitope-specific CD8⁺ T-cells ~50-fold [37*], improved effector function and enhanced cytotoxicity in response to re-stimulation with peptide [11]. Similarly, using CD70-transgenic mice with constitutive CD70 expression on Tcells [41], CD27 co-stimulation resulted in a ~2-fold increase in the number and function of D^bNP₃₆₆⁺CD8⁺ T-cells and accelerated viral clearance following influenza A virus (IAV) infection. Conversely, in CD27^{-/-} mice, the number of total D^bNP₃₆₆⁺CD8⁺ T-cells was decreased in the lungs at 10 days after IAV infection [38]. Furthermore, T-cells isolated from CD27^{-/-} mice were less likely to proliferate compared to T-cells isolated from wild-type (WT) mice following anti-CD3 crosslinking in vitro. Interestingly, anti-CD28 co-stimulation augmented this proliferation, but not to WT levels, suggesting that CD27 and CD28 co-stimulation are not redundant and are qualitatively different. CD70^{-/-} mice infected with acute LCMV displayed a <2-fold decrease in total $D^{b}NP_{396}^{+}CD8^{+}$ T-cells 6-8 days post infection (dpi) and a ~5-fold reduction in viral clearance compared to WT mice [39*]. Similarly, CD8⁺ T-cells from WT mice infected with acute LCMV and treated with a blocking CD70 mAb [40] were less functional upon peptide re-simulation at 7dpi. Collectively, these studies demonstrate that CD27 co-stimulation is important for CD8⁺ T-cell proliferation, cytotoxicity and function and enhances viral clearance during primary infection with acute IAV and LCMV.

(ii) CD27 co-stimulation augments memory CD8⁺ T-cell pools

CD27 co-stimulation also increases the magnitude of memory epitope-specific CD8⁺ T-cell populations. In adoptive transfer experiments with OT-1 CD8⁺ T-cells, augmenting CD27 co-stimulation during priming increased the proportion of OT-1 CD8⁺ T-cells >30-fold at 23 days post-activation (dpa) [11]. Conversely, chronic CD27 co-stimulation decreased NP₃₆₆⁺CD8⁺ T-cell numbers 4-fold 57dpi with IAV [41]. The increase in epitope-specific memory with CD27 co-stimulation is likely to result from enhanced IL-7 signalling, as augmentation of CD27 co-stimulation retains IL-7R α expression on T cells [37*], while blocking CD27 co-stimulation decreases IL-7R α expression [42]. IL-7, produced by non-hematopoietic cells (e.g. stromal and epithelial cells) and immune cells such as DCs (reviewed in [43]) is functionally important for memory cell development and survival [44]. In this way, CD27 co-stimulation increases sensitivity to IL-7 via IL-7R α expression and enhances epitope-specific CD8⁺ T-cell transition into memory.

(iii) CD8⁺ T-cell recall is increased with CD27 co-stimulation

CD27 co-stimulation also enhances CD8⁺ T-cell recall (Table 1). Blocking CD27 costimulation in CD27^{-/-} mice delayed CD8⁺ T-cell recall following secondary IAV infection, with an early reduction in virus-specific CD8⁺ T-cells observed 5dpi [38]. However, this difference was reduced by 7dpi. Conversely, augmenting CD27 costimulation either during priming [11] or recall [45*] enhanced secondary responses by OT-I CD8⁺ T cells to OVA peptide. Interestingly, constitutive CD27 costimulation resulted in diminished T cell responses and impaired protection following secondary challenge with IAV [41]. These data show that enhanced, but not constitutive, CD27 co-stimulation during either primary or secondary infection can augment memory formation and recall responses.

(iv) Effects of CD27 co-stimulation in humans

Despite numerous murine studies, little is known about the role of CD27 costimulation in human T-cells (Table 2). *In vitro* findings show that augmenting CD27 co-stimulation by CD27 cross-linking [46,47**] or the addition of Colo679-CD70expressing cells [48] increased proliferation and function (IFN γ /TNF expression) of human T-cells 2- to 4-fold following non-specific activation [46,48]. Expectedly, gene expression profiling showed activation and proliferation profiles in T-cells with enhanced CD27 co-stimulation [47**]. Two independent studies also correlated the loss of CD27 co-stimulation with disease severity. A total of 8 patients with severe infectious mononucleosis (IM) and complications including EBV-associated

proliferative disorder and HLH malignant lymphoma, had mutations in their CD27 gene [49,50], resulting in loss of expression and thus CD27 co-stimulation. These studies suggest that CD27 co-stimulation is important in controlling chronic EBV infection and that CD27 co-stimulation has similar effects in mice and humans, and thus CD27 is important for effective activation of human CD8⁺ T-cells.

CD27 expression on γδ T-cells, B-cells and NK-cells

(i) Expression of CD27 on murine and human $\gamma\delta$ T-cells

Recently, it became apparent that two functionally distinct subsets of $\gamma\delta$ T-cells display differential expression of CD27. Although both CD27⁺ and CD27⁻ subtypes produce IFN- γ , only CD27⁻ $\gamma\delta$ T-cells produce IL-17 following *in vitro* stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin [1]. This effect of CD27 expression on $\gamma\delta$ T-cells was characterised on thymocytes derived from foetal organ thymic cultures (FTOC) and showed that CD27⁺ $\gamma\delta$ thymocytes had higher *Ifng* mRNA expression, while CD27⁻ $\gamma\delta$ thymocytes had decreased *Il17* expression (Table 3). Furthermore, CD27⁻ $\gamma\delta$ T-cells isolated from the spleen, lymph nodes (LN), lung or gut were CD44^{hi} and CD62L^{lo}, whereas CD27⁺ $\gamma\delta$ T-cells had lower CD44 expression, supporting CD27 as a marker of $\gamma\delta$ T-cells, as they proliferate in secondary lymphoid organs and thus have self-renewing, long-living properties.

The impact of the CD27 co-stimulatory pathway in peripheral $\gamma\delta$ T-cells remains largely unknown. Lombes *et al* [3*] suggested that peripheral CD27⁺ $\gamma\delta$ Tcells are similar to $\alpha\beta$ T-cells, by having distinct naïve-like and memory-like subsets with characteristic phenotypic, functional, and homeostatic outcomes, and as such, CD27 co-stimulation may affect the CD27⁺ $\gamma\delta$ T-cells in a similar manner. This was addressed by Ribot and colleagues [51], who stimulated murine CD27⁺ $\gamma\delta$ T-cells *in vitro* with sCD70 and showed increased IFN γ /TNF production with CD27 costimulation. Additionally, accumulation of IFN γ -producing CD27⁺ $\gamma\delta$ T-cells during MuHV-4 herpes or malaria infection was dependent on CD27 expression [51], emphasising the importance of CD27 for both anti-viral and anti-parasitic immunity (Table 3). Finally, to our knowledge, only one study has explored the co-stimulatory role of CD27 on human peripheral blood $\gamma\delta$ T-cells. deBarros *et al* [52] showed that interaction of CD27 with its ligand CD70 resulted in increased TCR-dependent activation in γ 982 T-cell lines, increased proliferation, enhanced survival and cytokine production, establishing the importance of CD27 co-stimulation on the functional differentiation of human γ 982 T-cells (Table 3). Since γ 8 T-cells contribute to antiviral and anti-cancer immunity, it is important to elucidate the role of CD27 co-stimulation and its potential role for future immunotherapies.

(ii) CD27 as a memory B-cell marker

Like T-cells, human B-cells can be subdivided according to their CD27 expression. However, unlike T-cells, naïve B-cells do not express CD27 and instead expression of CD27 is associated with memory. Interestingly, CD27⁻ B-cells populate the nonmutated V gene compartment of naïve-like B-cells [4], while expression of CD27 (CD27⁺) is commonly used to identify human memory B-cells with mutated V genes [4,5]. Circulating CD27⁺ memory B-cells can be further subdivided by their relative expression of the immunoglobulin (Ig) antibodies IgM and IgD [4,53]. Up to 40% of human peripheral B-cells express CD27 and show mutated variable regions in their Ig genes [6], making the CD27 receptor an interesting marker for B-cell subsetting. However, a minor CD27⁻ memory B-cell subset makes up 1-4% of all peripheral Bcells [6]. Therefore, CD27 expression alone is insufficient for B-cell memory identification. The function of CD27 co-stimulation on human memory B-cells has not been characterised, however, it is thought that, similar to T-cells, CD27-receptor signalling in B-cells can enhance survival [12]. It would be interesting to understand whether CD27 co-stimulation on B-cells is beneficial for maintaining lifelong serological memory by promoting the survival of memory B-cells. As such, determining the functional role of CD27 co-stimulation for B-cells may provide further potential for CD27-based immunotherapies.

(iii) CD27 expression marks functionally distinct NK-cells

NK-cells can also be sub-divided based on CD27 expression in both mice and humans [7,8]. In mice, the presence or absence of CD27 expression results in distinct effector functions, proliferative capacities, responsiveness, interaction with DCs, and migratory activity of NK-cells [7]. Mac1^{high}CD27⁺ murine NK-cells show increased IFNγ production compared to CD27⁻ NK-cells following activation with the NKG2D

ligand or IL-12 and IL-18. CD27⁺ NK-cells are predominately located in lymphoid organs and are considered to be naïve, while CD27⁻ NK-cells are located in the lung or peripheral blood and represent long-lived or senescent NK-cells [7].

Accordingly, two subsets of NK-cells, based on CD27 expression, are found in humans [8]. The majority of circulating human peripheral blood NK-cells are CD27⁻CD56^{dim}, and express high levels of perforin and granzyme B, however a subset of CD27⁺ NK-cells are identified as CD56^{dim/bright} with low levels of perforin and granzyme B [8]. This suggests that, similar to T-cells, the presence or absence of CD27 on NK-cells allows the identification of cytotoxic effector cells within the known mature NK-cell subsets.

Potential for manipulating CD27 co-stimulation for immunotherapy

The potent co-stimulatory capacity of CD27 and its expression across different subsets makes the CD27/CD70 signalling pathway a desirable target for immunotherapy. Different strategies of blocking or augmenting CD27/CD70 co-stimulation and the resultant outcomes for acute or chronic viral infections, autoimmune diseases, tumours, are discussed.

(i) Blocking CD27 co-stimulation may protect against immunopathology during chronic viral infections or autoimmunity.

Although beneficial during acute infections, CD27 co-stimulation may be detrimental during autoimmune or chronic viral infections [10,31] (Table 4). Lymphocytes derived from patients with the autoimmune disease systemic lupus erythematosus (SLE) [54] or rheumatoid arthritis [55] have a ~2-fold increase in CD70 expression on CD4⁺ T-cells, compared to healthy individuals. Since CD27 co-stimulation influences the production of pro-inflammatory cytokines, it might contribute to the pathology associated with inflammatory autoimmune diseases [10]. Indeed, SJL/J [56], DBA/1 [57] and RAG^{-/-} [58] mice activated to induce disease in the absence of CD27-stimulation had a reduction (~4-times) in clinical scores [9,30], suggesting that CD27 co-stimulation might be detrimental during particular autoimmune diseases, and that blocking CD27 co-stimulation may be a feasible option for future autoimmune immunotherapies (Table 4).

During chronic viral infections, T-cells become "exhausted" [59]. Strikingly, increased expression of CD70 and decreased CD27 expression was observed directly ex vivo on naïve CD19⁺CD27⁻ B-cells [60] and CD3⁺ T-cells [61] isolated from HIVinfected individuals compared to healthy donors, suggesting that prolonged CD27 costimulation may contribute to immunopathology during certain chronic infections. Using a transgenic mouse model with constitutive CD70 expression on T-cells to mimic the expression patterns observed in chronic infections, it was found that CD8⁺ T-cells subjected to continuous CD27 co-stimulation displayed enhanced response magnitude to influenza infection compared to WT mice [41]. However, these cells exhibited an exhausted phenotype, as measured by CD69^{hi}PD-1^{hi}IL7R^{lo} expression, and decreased IL-2/TNF production. Interestingly, CD70 blockade in mice during chronic LCMV (LC-13) infection increased numbers of IFNy-producing virusspecific CD8⁺ T-cells, but did not alter their exhausted phenotype [40], and accelerated viral clearance [62]. Thus, uncontrolled CD27 co-stimulation deregulates effector T cell differentiation, promotes exhaustion and contributes to the detrimental outcomes of chronic infections [40,62]. CD27 co-stimulation thus requires careful regulation [10]. As such, there is emerging interest in blocking CD27 co-stimulation in chronic viral infections and inflammatory disease [9,31].

(ii) Augmenting CD27 co-stimulation may help in cellular immunity to cancer

CD70 is highly expressed in multiple cancers including thymic carcinoma [38], cultivated brain tumours [63] and renal carcinoma [64]. Hence, CD70 and CD27 are considered as targets for immunotherapy [31,65-68]. Augmenting CD27 co-stimulation through use of CD70-secreting or expressing tumour cells in mice has resulted in potent enhancement of cell-mediated anti-tumour immunity to reduce or prevent tumour development, even at locations distal to the treatment site [69,70] (Table 5). This suggests that augmenting CD27 co-stimulation enhances systemic anti-tumour immunity and thus may be important for future immunotherapies. Indeed, a promising agonist anti-CD27 antibody is currently in phase I clinical trials. This immunotherapy, known as Varlilumab, is manufactured by Celldex Therapeutics and is being trialled against solid tumours and lymphoid malignancies [71] (Table 5). Although preliminary, this trial is highly promising and proves that manipulating CD27 co-stimulation may be an effective and viable anti-tumour immunotherapy, possibly in combination with other immunotherapies such as PD-1 blockade [72**].

CD27 is expressed on the majority of human T-cells and B-cells. Binding of CD27 to its only known ligand, CD70, has potent co-stimulatory effects, which can be either beneficial or detrimental in different circumstances. Due to these potent costimulatory effects, there is a great interest in manipulating CD27 co-stimulation for immunotherapy. Blocking CD27 co-stimulation may prevent/reduce the severity of chronic viral infections and autoimmune diseases. Conversely, augmenting CD27 costimulation may assist in anti-tumour immunity and may rescue exhausted CD8⁺ Tcells. Thus, targeting and manipulating the CD27-CD70 immune pathway is an exciting and emerging field, with a great promise for novel immunotherapies.

Acknowledgements

This work was supported by Australian National Health and Medical Research Council (NHMRC) Program (AI1071916) Grant to KK. EJG is a recipient of a NHMRC CJ Martin Fellow, EBD is a NHMRC Peter Doherty Fellow and KK is an NHMRC SRF Level B. SN was supported by a Melbourne International Fee Remission Scholarship (MIFRS) and Melbourne International Research Scholarship (MIRS). SS was supported by a Victoria India Doctoral Scholarship (VIDS) and MIFRS.

Figure Legend

Figure 1. Effects of CD27 co-stimulation on naïve, effector, and memory CD8⁺ T cells. CD27 co-stimulation of naïve CD8⁺ T cells via CD70 expressed on DCs or APCs leads to the activation of canonical and non-canonical NF- κ B pathways, resulting in up-regulation of anti-apoptotic molecules and cytokine receptors. Augmented CD27 co-stimulation during primary activation increases a number of epitope-specific CD8⁺ T cells, enhanced effector function and retention of IL-7R α expression, thus elevating numbers of CD8⁺ T cells that persist into memory and participate in recall responses. Interestingly, chronic CD27 co-stimulation results in reduced T cell memory and impaired protection against subsequent virus infection.

Diminished CD27 co-stimulation is associated with numerically and functionally reduced CD8⁺ T cell responses and decreased memory formation. Given these potent effects of CD27 co-stimulation on the magnitude and quality of CD8⁺ T cell immunity, manipulating CD27 signalling may prove an effective target of immunotherapies not just for viruses, but also chronic diseases and cancer.

References

- Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ, et al.: CD27 is a thymic determinant of the balance between interferon-gamma-and interleukin 17-producing gamma delta T cell subsets. *Nature Immunology* 2009, 10:427-436.
- 2. Taghon T, Yui MA, Pant R, Diamond RA, Rothenberg EV: Developmental and molecular characterization of emerging beta- and gamma delta-selected pre-T cells in the adult mouse thymus. *Immunity* 2006, 24:53-64.

The authors show that the phenotypic, functional, and homeostatic characteristics of the CD27⁺ $\gamma\delta$ T cell compartment is comparable to that of naive and memory CD8⁺ $\alpha\beta$ T cells, unlike the CD27⁻ $\gamma\delta$ T cell compartment in mice.

* 3. Lombes A, Durand A, Charvet C, Riviere M, Bonilla N, Auffray C, Lucas B, Martin B: Adaptive Immune-like gamma/delta T Lymphocytes Share Many Common Features with Their alpha/beta T Cell Counterparts. Journal of Immunology 2015, 195:1449-1458.

The authors show that the phenotypic, functional, and homeostatic characteristics of the CD27⁺ $\gamma\delta$ T cell compartment is comparable to that of naive and memory CD8⁺ $\alpha\beta$ T cells, unlike the CD27⁻ $\gamma\delta$ T cell compartment in mice.

- 4. Klein U, Rajewsky K, Kuppers R: Human immunoglobulin (Ig)M(+)IgD(+) peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. Journal of Experimental Medicine 1998, 188:1679-1689.
- Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE: Identification of functional human splenic memory B cells by expression of CD148 and CD27. Journal of Experimental Medicine 1998, 188:1691-1703.
- 6. Fecteau JF, Cote G, Neron S: A new memory CD27(-)IgG(+) B cell population in peripheral blood expressing V-H genes with low frequency of somatic mutation. *Journal of Immunology* 2006, 177:3728-3736.
- 7. Hayakawa Y, Smyth MJ: CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. *Journal of Immunology* 2006, **176**:1517-1524.
- Vossen MTM, Matmati M, Hertoghs KML, Baars PA, Gent NR, Leclercq G, Hamann J, Kuijpers TW, van Lier RAW: CD27 defines phenotypically and functionally different human NK cell subsets. *Journal of Immunology* 2008, 180:3739-3745.
- 9. Croft M: The role of TNF superfamily members in T-cell function and diseases. *Nat Rev Immunol* 2009, **9**:271-285.

- 10. Nolte MA, van Olffen RW, van Gisbergen KP, van Lier RA: Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. *Immunol Rev* 2009, 229:216-231.
- 11. Rowley TF, Al-Shamkhani A: Stimulation by soluble CD70 promotes strong primary and secondary CD8+ cytotoxic T cell responses in vivo. J Immunol 2004, 172:6039-6046.
- 12. Hendricks J, Xiao YL, Borst J: CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. *Journal of Experimental Medicine* 2003, **198**:1369-1380.
- 13. Dolfi DV, Katsikis PD: CD28 and CD27 costimulation of CD8+ T cells: a story of survival. *Adv Exp Med Biol* 2007, **590**:149-170.
- 14. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. *Nature* 1998, **392**:245-252.
- 15. Bennett SRM, Carbone FR, Karamalis F, Miller JFAP, Heath WR: Induction of a CD8(+) cytotoxic T lymphocyte response by cross-priming requires cognate CD4(+) T cell help. Journal of Experimental Medicine 1997, 186:65-70.
- Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998, 393:474-478.
- Bedoui S, Heath WR, Mueller SN: CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity. *Immunological Reviews* 2016, 272:52-64.
- Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z: Signals required for programming effector and memory development by CD8+ T cells. *Immunol Rev* 2006, 211:81-92.
- 19. den Haan JM, Arens R, van Zelm MC: The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. *Immunol Lett* 2014, **162**:103-112.
- 20. Hennecke J, Wiley DC: T cell receptor-MHC interactions up close. *Cell* 2001, **104**:1-4.
- 21. Watts TH: **Tnf/tnfr family members in costimulation of T cell responses**. Annual Review of Immunology 2005, **23**:23-68.
- 22. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA: CD28 Costimulation: From Mechanism to Therapy. *Immunity* 2016, 44:973-988.
- 23. June CH, Bluestone JA, Nadler LM, Thompson CB: The B7 and CD28 receptor families. *Immunol Today* 1994, 15:321-331.
- 24. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF: Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. *J Immunol* 1999, 162:3256-3262.
- 25. Smith-Garvin JE, Koretzky GA, Jordan MS: **T Cell Activation**. Annual Review of Immunology 2009, **27**:591-619.
- 26. Butcher EC, Picker LJ: Lymphocyte homing and homeostasis. *Science* 1996, 272:60-66.
- 27. van Lier RA, Borst J, Vroom TM, Klein H, Van Mourik P, Zeijlemaker WP, Melief CJ: Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J Immunol 1987, 139:1589-1596.

- 28. Gravestein LA, Nieland JD, Kruisbeek AM, Borst J: Novel mAbs reveal potent co-stimulatory activity of murine CD27. *Int Immunol* 1995, 7:551-557.
- 29. Kobata T, Jacquot S, Kozlowski S, Agematsu K, Schlossman SF, Morimoto C: CD27-CD70 interactions regulate B-cell activation by T cells. *Proc Natl Acad Sci U S A* 1995, 92:11249-11253.
- 30. Denoeud J, Moser M: Role of CD27/CD70 pathway of activation in immunity and tolerance. *J Leukoc Biol* 2011, **89**:195-203.
- 31. Wajant H: Therapeutic targeting of CD70 and CD27. Expert Opinion on Therapeutic Targets 2016, 20:959-973.
- 32. Sanchez PJ, McWilliams JA, Haluszczak C, Yagita H, Kedl RM: Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo. *J Immunol* 2007, **178**:1564-1572.
- 33. Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, et al.: CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stressactivated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 1998, 273:13353-13358.
- 34. van Oosterwijk MF, Juwana H, Arens R, Tesselaar K, van Oers MH, Eldering E, van Lier RA: CD27-CD70 interactions sensitise naive CD4+ T cells for IL-12-induced Th1 cell development. *Int Immunol* 2007, 19:713-718.
- 35. Hintzen RQ, de Jong R, Lens SM, Brouwer M, Baars P, van Lier RA: **Regulation** of CD27 expression on subsets of mature T-lymphocytes. *J Immunol* 1993, 151:2426-2435.
- 36. Gravestein LA, van Ewijk W, Ossendorp F, Borst J: **CD27 cooperates with the pre-T cell receptor in the regulation of murine T cell development**. *J Exp Med* 1996, **184**:675-685.
- *37. Willoughby JE, Kerr JP, Rogel A, Taraban VY, Buchan SL, Johnson PW, Al-Shamkhani A: Differential impact of CD27 and 4-1BB costimulation on effector and memory CD8 T cell generation following peptide immunization. J Immunol 2014, 193:244-251.
- CD27 co-stimulation via the addition of sCD70 enhances primary and memory CD8⁺ T-cell responses and promotes retention of IL-7R α .
- 38. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J: CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 2000, 1:433-440.
- *39. Munitic I, Kuka M, Allam A, Scoville JP, Ashwell JD: **CD70 deficiency** impairs effector **CD8 T** cell generation and viral clearance but is dispensable for the recall response to lymphocytic choriomeningitis virus. *J Immunol* 2013, **190**:1169-1179.

Loss of CD27 co-stimulation in CD70^{-/-} mice decreases CD8⁺ T cell proliferation, differentiation and function, and reduces viral clearance during CMV infection.

- 40. Penaloza-MacMaster P, Ur Rasheed A, Iyer SS, Yagita H, Blazar BR, Ahmed R: Opposing effects of CD70 costimulation during acute and chronic lymphocytic choriomeningitis virus infection of mice. J Virol 2011, 85:6168-6174.
- 41. van Gisbergen KP, van Olffen RW, van Beek J, van der Sluijs KF, Arens R, Nolte MA, van Lier RA: Protective CD8 T cell memory is impaired during chronic CD70-driven costimulation. *J Immunol* 2009, 182:5352-5362.

- 42. Dong H, Franklin NA, Roberts DJ, Yagita H, Glennie MJ, Bullock TN: CD27 stimulation promotes the frequency of IL-7 receptor-expressing memory precursors and prevents IL-12-mediated loss of CD8(+) T cell memory in the absence of CD4(+) T cell help. *J Immunol* 2012, 188:3829-3838.
- 43. Gao J, Zhao L, Wan YY, Zhu B: Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy. Int J Mol Sci 2015, 16:10267-10280.
- 44. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R: Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. *Nat Immunol* 2003, **4**:1191-1198.
- *45. Taraban VY, Rowley TF, Kerr JP, Willoughby JE, Johnson PM, Al-Shamkhani A, Buchan SL: CD27 costimulation contributes substantially to the expansion of functional memory CD8(+) T cells after peptide immunization. Eur J Immunol 2013, 43:3314-3323.

Enhancing CD27 co-stimulation with a CD27 agonistic mAb during secondary activation enhances recall.

- 46. Vitale LA, He LZ, Thomas LJ, Widger J, Weidlick J, Crocker A, O'Neill T, Storey J, Glennie MJ, Grote DM, et al.: Development of a human monoclonal antibody for potential therapy of CD27-expressing lymphoma and leukemia. *Clin Cancer Res* 2012, 18:3812-3821.
- **47. Ramakrishna V, Sundarapandiyan K, Zhao B, Bylesjo M, Marsh HC, Keler T: Characterization of the human T cell response to in vitro CD27 costimulation with varilumab. J Immunother Cancer 2015, 3:37.

Increased CD27 co-stimulation with a novel anti-CD27 antibody named Varlilumab enhances cytokine production and can influence gene expression following polyclonal activation of human T cells by CD3 cross-linking.

- 48. Braun-Falco M, Hallek M: Recombinant adeno-associated virus (rAAV) vector-mediated cotransduction of CD70 and CD80 into human malignant melanoma cells results in an additive T-cell response. Arch Dermatol Res 2001, 293:12-17.
- 49. Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, Schwendinger M, Haas OA, Fritsch G, Pickl WF, et al.: Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica 2013, 98:473-478.
- 50. van Montfrans JM, Hoepelman AI, Otto S, van Gijn M, van de Corput L, de Weger RA, Monaco-Shawver L, Banerjee PP, Sanders EA, Jol-van der Zijde CM, et al.: CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 2012, 129:787-793 e786.
- 51. Ribot JC, Chaves-Ferreira M, d'Orey F, Wencker M, Goncalves-Sousa N, Decalf J, Simas JP, Hayday AC, Silva-Santos B: Cutting Edge: Adaptive Versus Innate Receptor Signals Selectively Control the Pool Sizes of Murine IFN-gamma- or IL-17-Producing gamma delta T Cells upon Infection. Journal of Immunology 2010, 185:6421-6425.
- 52. DeBarros A, Chaves-Ferreira M, d'Orey F, Ribot JC, Silva-Santos B: CD70-CD27 interactions provide survival and proliferative signals that regulate

T cell receptor-driven activation of human gammadelta peripheral blood lymphocytes. *Eur J Immunol* 2011, **41**:195-201.

- 53. Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH, Berner R, Peters A, Boehm T, Plebani A, et al.: Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. Journal of Experimental Medicine 2003, 197:939-945.
- 54. Han BK, White AM, Dao KH, Karp DR, Wakeland EK, Davis LS: Increased prevalence of activated CD70+CD4+ T cells in the periphery of patients with systemic lupus erythematosus. *Lupus* 2005, 14:598-606.
- 55. Lee WW, Yang ZZ, Li G, Weyand CM, Goronzy JJ: Unchecked CD70 expression on T cells lowers threshold for T cell activation in rheumatoid arthritis. *J Immunol* 2007, **179**:2609-2615.
- 56. Nakajima A, Oshima H, Nohara C, Morimoto S, Yoshino S, Kobata T, Yagita H, Okumura K: Involvement of CD70-CD27 interactions in the induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 2000, 109:188-196.
- 57. Oflazoglu E, Boursalian TE, Zeng W, Edwards AC, Duniho S, McEarchern JA, Law CL, Gerber HP, Grewal IS: Blocking of CD27-CD70 pathway by anti-CD70 antibody ameliorates joint disease in murine collagen-induced arthritis. J Immunol 2009, 183:3770-3777.
- Manocha M, Rietdijk S, Laouar A, Liao G, Bhan A, Borst J, Terhorst C, Manjunath N: Blocking CD27-CD70 costimulatory pathway suppresses experimental colitis. J Immunol 2009, 183:270-276.
- 59. Kahan SM, Wherry EJ, Zajac AJ: T cell exhaustion during persistent viral infections. *Virology* 2015.
- 60. De Milito A, Nilsson A, Titanji K, Thorstensson R, Reizenstein E, Narita M, Grutzmeier S, Sonnerborg A, Chiodi F: Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. *Blood* 2004, 103:2180-2186.
- 61. Wolthers KC, Otto SA, Lens SM, Kolbach DN, van Lier RA, Miedema F, Meyaard L: Increased expression of CD80, CD86 and CD70 on T cells from HIV-infected individuals upon activation in vitro: regulation by CD4+ T cells. Eur J Immunol 1996, 26:1700-1706.
- 62. Matter M, Odermatt B, Yagita H, Nuoffer JM, Ochsenbein AF: Elimination of chronic viral infection by blocking CD27 signaling. J Exp Med 2006, 203:2145-2155.
- 63. Held-Feindt J, Mentlein R: CD70/CD27 ligand, a member of the TNF family, is expressed in human brain tumors. *Int J Cancer* 2002, **98**:352-356.
- 64. Diegmann J, Junker K, Gerstmayer B, Bosio A, Hindermann W, Rosenhahn J, von Eggeling F: Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, real-time RT-PCR and immunohistochemistry. *Eur J Cancer* 2005, **41**:1794-1801.
- 65. Grewal IS: **CD70 as a therapeutic target in human malignancies**. *Expert Opin Ther Targets* 2008, **12**:341-351.
- 66. Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, Rottey S, Lardon F, Smits E, Pauwels P: **CD70: An emerging target in cancer immunotherapy**. *Pharmacol Ther* 2015.

- 67. Schaer DA, Hirschhorn-Cymerman D, Wolchok JD: Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. *J Immunother Cancer* 2014, **2**:7.
- Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I: Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol 2015, 42:640-655.
- 69. Cormary C, Gonzalez R, Faye JC, Favre G, Tilkin-Mariame AF: Induction of Tcell antitumor immunity and protection against tumor growth by secretion of soluble human CD70 molecules. *Cancer Gene Ther* 2004, 11:497-507.
- 70. Lorenz MG, Kantor JA, Schlom J, Hodge JW: Anti-tumor immunity elicited by a recombinant vaccinia virus expressing CD70 (CD27L). *Hum Gene Ther* 1999, **10**:1095-1103.
- 71. 2014. CT-hiccrcRrpo: Celldex Therapeutics' Varlilumab Continues to Demonstrate Very Favorable Profile. In ASCO Annual Meeting 2014. Edited by. Chicago, IL, USA; 2014.
- **72. Buchan SL, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, Sivakumaran S, Ghorashian S, Carpenter B, Bennett CL, et al.: OX40- and CD27mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol 2015, 194:125-133.

Augmenting CD27 co-stimulation with an agonistic CD27 mAb in the absence of inflammation can rescue exhausted cells.

Highlights

- CD27 is a co-stimulatory receptor expressed on T-cells, B-cells and NK-cells
- CD27-CD70 co-stimulation enhances primary, memory and recall T-cell responses
- Manipulating CD27-CD70 signalling is of interest for a variety of immunotherapies

Model	Experimental design	Method of	Major findings	Key finding	Reference		
CD27 ao stim	ulation is important for T	detection	ing, ing, ing, ing, ing, ing, ing, ing,	ney mung	Reference		
Block CD27 co- CD27 co-stimulation							
RAG-/-	stimulation with a mAb during thymic development	Flow-cytometry	Decreased transition of DN to DP thymocytes	is needed for transition of DN to DP thymocytes	Gravestein <i>et</i> <i>al</i> , 1996 [Ref. 36]		
Enhanced CI	027 co-stimulation increas	es primary, memo	ry and recall CD8 ⁺ T-cell r	esponses			
	Naïve OT-1 CD8 ⁺ T- cells were adoptively transferred into naïve C57BL/6 mice. OVA ₂₅₇₋₂₆₄ peptide was administered in the presence or absence of sCD70, or an agonist CD27 mAb	Tetramer & flow-cytometry	~17-fold increase in the proportion of OT-1 CD8 ⁺ T-cells 4, 6 and 8dpa		Rowley <i>et al</i> , 2004 [Ref. 11]		
OT-1 and C57BL/6		⁵¹ Cr killing assay Tetramer &	 >15-fold increase in cytotoxicity 10dpa ~36-fold increase in the proportion of OT-1 	Enhanced CD27 co- stimulation augments primary, memory and recall CD8 ⁺ T-cell			
001020		flow-cytometry Tetramer &	CD8 ⁺ T-cells at memory, 23dpa >20-fold increase in OT-1 CD8 ⁺ T-cells in	responses			
OT-1 and C57BL/6	Naïve OT-1 CD8 ⁺ T- cells were adoptively transferred into naïve C57BL/6mice and activated by OVA peptide in the presence or absence of sCD70	Tetramer & flow-cytometry	the peripheral blood 8dpr and ~12-fold 20dpr >50-fold increase in OT-1 CD8 ⁺ T-cells in peripheral blood 8dpa		Willoughby et al, 2014 [Ref. 37]		
		Tetramer-ICS & flow cytometry	\sim 3-4 fold increase in IL- 2 ⁺ , IFN γ^+ and perforin ⁺ OT-1 CD8 ⁺ T-cells 3dpa	CD27 co-stimulation enhances primary and memory CD8 ⁺ T-cell responses			
		Tetramer & flow-cytometry	~2-fold increase in the number of OT-1 CD8 ⁺ T-cells in the peripheral blood 65dpa	responses			
		Tetramer & flow-cytometry	~6-fold increase in IL- 7Rα expression on OT- 1 CD8 ⁺ T-cells 3dpa, but ~2-fold 4dpa	Enhanced CD27 co- stimulation decreases IL7Rα down- regulation			
Transgenic mice with constitutive CD70 expression on T-cells		Weight loss	~10% more body weight 8-12dpi		Rowley <i>et al</i> , 2004 [Ref. 11] Willoughby <i>et al</i> , 2014 [Ref. 37]		
		qPCR	~2-log decrease in viral lung titres				
	Transgenic mice with constitutive WT and transgenic mice were infected	Tetramer & flow-cytometry	~2-fold increase in NP ₃₆₆ -specific CD8 ⁺ T- cells in blood, MLN and spleen 10dpi	Constitutive CD27 co- stimulation enhances primary CD8 ⁺ T cell responses, but results in reduced memory		Van Gisbergen <i>et</i>	
		ICS & flow- cytometry	2-fold increase in the number of IFNγ ⁺ T-cells 10dpi ~4-fold reduction in the	formation			
	11/m	Tetramer & flow-cytometry	number of NP ₃₆₆ - specific CD8 ⁺ T-cells in the spleen 57dpi	0			
	wT or transgenic mice were infected with	Tetramer & flow-cytometry	~4-told decrease in NP ₃₆₆ -specific CD8 ⁺ T-	Constitutive CD27 co- stimulation during			

Table 1. Publications describing the role of CD27 co-stimulation in mice

	IAV then challenged 51-61 days later with a serologically distinct		cells in the spleen and blood 8dpc ~4-fold decrease in the	both primary and secondary activation decreases recall		
	IAV	ICS and flow- cytometry	number of IFNy ⁺ CD8 ⁺ T-cells 8dpc			
CD27- ²⁻	CD27 ^{-/-} and WT mice were infected with IAV	Tetramer & flow-cytometry	~3-fold decrease in total and NP ₃₃₆ -specific CD8 ⁺ T-cells, in the lung 10dpi	Loss of CD27 co- stimulation decreases CD8 ⁺ T-cell proliferation		
	CD27 ^{-/-} or WT mice were infected with IAV and challenged 6 weeks later	Tetramer & flow-cytometry	~7-fold and ~14-fold decrease in the number of total or NP ₃₃₈ .specific CD8 ⁺ T-cells, respectively 5dpc. Decreased to ~1.5-fold 7dpc	Loss of CD27 co- stimulation delays recall during secondary IAV infection	Hendricks et al, 2003	
	Purified T-cells from WT and CD27 ^{-/-} mice were activated by αCD3 cross-linking +/- additional αCD28 <i>in</i> <i>vitro</i>	Thymidine incorporation	~2-fold decrease in proliferation 3dpa for T- cells from CD27 ^{-/-} mice in the absence of αCD28 αCD28 increases proliferation of CD8 ⁺ T- cells from CD27 ^{-/-} mice, but not to same extent as WT mice 3dpa	CD27 and CD28 co- stimulation are qualitatively different	[Ref. 12]	
	CD70 ^{-/-} or WT mice were infected with	Tetramers	<2-fold decrease in total and NP ₃₉₆ -specific CD8 ⁺ T-cells, 6-8dpi		Munitic <i>et al</i> , 2013 [Ref. 39]	
CD70 ^{-/-} and		Flow cytometry	Decreased differentiation by CD44 ^{hi} and CD62L expression 8dpi	Loss of CD27 co- stimulation decreases epitope-specific proliferation,		
C57BL/6	acute LCMV	ICS & flow- cytometry	~2-fold reduction in IFNγ, TNF and IL-2 6- 8dpi	differentiation and function, and reduces viral clearance		
_		qRT-PCR	~5-fold reduction in viral clearance 6 and 8dpi			
C57BL/6	C57BL/6 mice were infected with acute LCMV in the absence or presence of a CD70 blocking mAb	ICS & flow- cytometry	~6-fold reduction in the proportion and numbers of IFN γ^+ TNF ⁺ cells 7dpi.	Loss of CD27 co- stimulation decreases the function of epitope-specific CD8 ⁺ T-cells	Penaloza- McMaster <i>et</i> <i>al</i> , 2011 [Ref. 40]	
OT-1 And C57BL/6	OT-1 CD8 ⁺ T-cells were transferred into C57BL/6 mice. Mice were vaccinated with OVA-vac and treated	Tetramer & flow-cytometry	~5-fold decrease in the number of resting memory OT-1 CD8 ⁺ T- cells 90dpa	Blocking CD27 co- stimulation decreases the number of IL-7Rα expressing memory	Dong <i>et al</i> , 2012 [Ref. 42]	
	with or without an αCD70- blocking mAb	Flow-cytometry	~2-fold decrease in IL7Rα expression 7dpa	precursor cells		
	C57BL/6 mice were immunised with OVA peptide and an agonistic anti-CD40	Tetramer & flow-cytometry	~8-fold increase in total OVA ₂₅₇₋₂₆₄ - specific CD8 ⁺ T-cells 8dpr	Enhanced CD27 co-	Taraban <i>et</i> <i>al</i> , 2013 [Ref. 45]	
C57BL/6	antibody and recalled 15-48 days later with OVA peptide, in the absence or presence of a CD27 agonist mAb	⁵¹ Cr killing assay	~12-fold increase in cytotoxicity 6pdr	stimulation during secondary activation enhances recall		

IAV=influenza A virus, dpi=days post infection, dpa=days post activation, dpt=days post transfer, pdc=days post challenge, dpr=days post recall

Model	Experimental design	Method of detection	Major findings	Key finding	Reference		
CD27 co-stimulation enhances T-cell function in humans							
Human T- cells	PBMCs were negatively enriched for T-cells. Stimulated with a suboptimal dose of ConA in the presence Colo679-CD70 ⁺ or Colo679- CD70 ⁻ cells	Thymidine incorporation	~2-fold decrease in proliferation	CD27 co- stimulation increases proliferation	Braun-Falco <i>et al</i> , 2001 [Ref. 48]		
Human T- cells	CD3 ⁺ T-cells were activated by αCD3 cross-linking with or without cross-linking CD27 with plate bound Varlilumab	cellTitre-Glo luminescence assay	4-fold increase in proliferation 5pda	Enhanced CD27 co- stimulation	Vitale <i>et al</i> , 2012 [Ref. 46]		
		ICS	~2-fold increase in IFNγ and TNF production 2dpa	increases proliferation and function			
Human T- cells	CD3 ⁺ T-cells were activated by αCD3 cross-linking with or without CD27 cross- linking with plate bound Varlilumab	ELISA	~4-fold increase in IFNγ, TNF, IL-2 and IL- 13 production 72hpa	Increased CD27 co- stimulation			
	CD3 ⁺ T-cells cultures were activated with αCD3 cross- lining with irradiated CD70- expressing cells	enna ~2-fold increase in IFNγ cytol ELISA and IL-13 production produ 72hpa		cytokine production	Ramakrishna et al, 2015 [Ref. 47]		
	CD3 ⁺ T-cells were activated by αCD3 cross-linking with or without cross-linking CD27 with plate bound Varlilumab	Gene microarray	CD27 co-stimulation resulted in a distinct gene expression profile	CD27 co- stimulation influences gene expression			

Table 2. Summary of publications describing the role of CD27 co-stimulation on human T-cells

dpa=days post activation, hpa=hours post activation

Model	Experimental design	Method of detection	Major findings	Key finding	Reference
Mouse stu	ıdies				
C57BL/6	Total γδ T-cells from spleen and LN were stimulated with αCD3 supplemented with sCD70	CBA and flow cytometery	Dose dependent increase in survival and expression of pro- inflammatory cytokines	CD27 co-stimulation supported survival and proliferation of $\gamma\delta$ T cells	Ribot <i>et al,</i> 2010
WT and CD27 ^{-/-}	Mice were infected with murine herpes virus and malaria	ICS	~ 1 to 4 fold increase in proportion IFNγ producing γδ T-cells	Loss of CD27 co-stimulation decreased IFNγ production	[Ref. 51]
C57BL/6	Thymic and splenic γδ T- cells were isolated from embryonic, newborn and adult C57BL/6 mice	Flow cytometery	90% of γδ thymocytes were CD27 ^{hi}	CD27 expression defines stable IFNγ-producing and IL-17- producing γδ subsets	
WT, TCR α- and TCRβ- deficient, CD27 ^{-/-}	Peripheral γδ T-cells were isolated	Real time PCR and flow cytometery	Decrease in IFNγ expression levels in peripheral	Loss of CD27 co-stimulation decreases IFNγ expression	Ribot <i>et al</i> , 2009
FTOC γδ thymocytes	FTOC γδ thymocytes FTOC γδ thymocytes were treated with sCD70 and immunoglobulin		Upregulation of IFNγ in CD27- expressing γδ-thymocytes and down-regulation of IL-17 in CD27-negative γδ-thymocytes	Enhanced CD27 co-stimulation affected IFN-γ and IL-17 expression	[101.1]
Human	studies				
γ9δ2 T-cell line	γ9δ2 cells were enriched from phosphoantigen expanded PBMCs. MACS- sorted γδ T-cells were stimulated with phosphoantigen in the presence of sCD70 or αCD70	CFSE and CBA	Augmented proliferation and increase in Th1 effector functions	Enhanced CD27 co-stimulation increases proliferation, survival and cytokine production	DeBarros <i>et</i> <i>al</i> , 2011 [Ref. 52]

Table 3. Publications investigating the influence of CD27 co-stimulation on $\gamma\delta$ T-cells

Model	Experimental design	Method of detection	Major findings	Key finding	Reference
Blocking CD	027 co-stimulation protects a	gainst autoimmunity			
SJL/J	SJL/J mice were injected with PLP ₁₃₉ to initiate experimental autoimmune encephalomyelitis (EAE) in the presence or absence of αCD70 blocking mAb	Activity score	~3-fold decrease in mean clinical score up to 50dpi	Early blocking CD27 co- stimulation reduces EAE a murine model of multiple sclerosis	Nakajima <i>et al</i> , 2000 [Ref. 56]
DBA/1	DBA/1 mice were injected with Bovine CII in CFA on day 0 and 21 to initiate murine induced collagen arthritis in the presence of an α CD70 blocking	Clinical score	~3-fold reduction in clinical score up to 25 days post treatment ~1.5-fold reduction	Blocking CD27 co-stimulation reduces induced collagen arthritis in a murine model	Oflazoglu <i>et al</i> , 2009 [Ref. 57]
	antibody from day 21	Histopathology vscore	score	model	
	CD4 ⁺ CD45RB ^{hi} naïve T- cells from C57BL/6 mice were transferred into RAG ^{-/-} mice to initiate	Activity index	~3-fold reduction in disease severity 8wpa	Blocking CD27	
C57BL/6 and RAG ^{-/-}	experimental colitis with or without αCD70 blocking mAb (pre- symptomatic)	Histology	~2-told decrease in tissue destruction (histology score) 8wpa	co-stimulation prevents establishment and reduces severity of experimental colitis in a murine model of inflammatory bowel disease	Manocha et al, 2009 [Ref. 58]
	Experimental colitis was established and mice were treated with or without α CD70 blocking mAb 5 weeks post transfer (post- symptomatic)	Activity index	~2-fold reduction in disease severity 8wpa weeks post activation		
		Histology	~1.5-fold reduction in disease severity 8wpa		
Blocking CD	027 co-stimulation protects a	gainst chronic viral infec	tion		
Transgenic mice with constitutive CD70 expression on T cells	Naïve mice were assessed at 8 weeks of age	Flow-cytometry	~5-fold increase in CD8 ⁺ TEM T-cells in the spleen with a more exhausted phenotype including increased CD69 and PD-1 expression, and decreased IL7Rα expression	Constitutive CD27 co- stimulation deregulates	Van Gisbergen <i>et al</i> , 2009 [Ref. 41]
	TEM cells isolated at 30 weeks of age stimulated with PMA/Ionomycin	ICS & flow-cytometry	~2-fold decrease in polyfunctionality (IL2 ⁺ TNFα ⁺) of CD8 ⁺ T-cells following restimulation	differentiation	
C57BL/6	Mice were infected with chronic LCMV in the presence or absence of an αCD70 blocking mAb	ICS & flow-cytometry	~1.5-fold increase in the number of IFNγ expressing cells following restimulation with peptide in an ICS	Blocking CD27 co-stimulation increases epitope- specific CD8 ⁺ T-	Penaloza- McMaster <i>et al</i> , 2011 [Ref. 40]

Table 4. Publications blocking CD27 co-stimulation for immunotherapy in mice

[Ref. 62] an aCD70 blocking mAb clearance dpi=days post infection, dpa=days post activation, dpt=days post transfer, pdc=days post challenge, wpi=weeks post infection, wpa=weeks post activation, TEM=effector memory T-cells

Immunological focus

assay

assay 21dpi. <1-fold change 7dpi.

~1.5-log decrease in

viral titres 66dpi

cell numbers

Blocking CD27

co-stimulation

increases viral

Matter et

al, 2006

C57BL/6

Mice were infected with a

chronic strain of LCMV in

the presence or absence of

Model	Experimental design	Method of detection	Major findings	Key finding	Reference
Augmenting (CD27 co-stimulation can rescue exh	austed cells			
05701/6	TCR-transgenic Mh CD8 ⁺ T- cells were adoptively transferred into male MHC-matched bone marrow transfer recipients in the presence or absence of an agonistic CD27 mAb	Thymidine incorporation	~2-fold increase in Mh CD8 ⁺ T-cell proliferation	Augmenting CD27 co- stimulation in the absence of inflammation can rescue exhausted cells	Buchan <i>et</i> <i>al</i> , 2015 [Ref. 72]
CS/BEG	Additional blockade of PD-1	ICS & flow- cytometry	${\sim}2\text{-fold}$ increase in the proportion of IFN γ^+ Mh CD8 ⁺ T-cells following restimulation with the cognate UTY peptide		
Augmented C	D27 co-stimulation enhances anti-tu	ımour immunity in	mice		
BalbC	Mice were injected with live tumour-inducing TSA-WT in combination with irradiated (non-tumour inducing) transfected (mock or CD70- secreting) TSA or MC57 cells	Observation	~20% increase in non-tumour development 27dpi and ~1.5-fold reduction in tumour size 28dpi	Enhancing CD27 co-stimulation increases tumour immunogenicity	Cormary <i>et</i> <i>al</i> , 2004 [Ref. 69]
	Mice were injected with tumour-inducing MC38 cells that were uninfected or infected with VV-WT or VV-CD70 ⁺		Complete protection against tumour development 28dpt	Augmented CD27 co- stimulation prevents tumour formation	Lorenz <i>et</i> <i>al</i> , 1999 [Ref. 70]
C57BL/6	Mice were vaccinated with HBSS or MC38 cells infected with VV-CD70 ⁺ . Mice were challenged with uninfected MC38 cells on the opposite flank	Observation	~8-fold reduction in tumour volume on the opposite flank 14dpc		
Augmented C	D27 co-stimulation increases anti-tu	ımour immunity in	humans		
	Humans with non-Hodgkin's lymphoma (n=3)		100% effective, 1 patient partial response, 2 patients stable disease		
Humans in a clinical trial treated with Varlilumab, an αCD27 agonist mAb	Humans with renal carcinoma (n=15)	Observation	40% effective, 1 individual partial response, 3 experienced stable disease	Enhanced CD27 co-stimulation can reduce tumours in humans	Varlilumab [Ref. 71]
	Humans with solid tumours (n=25)		16% effective, 4 patients stable disease		
	Humans with melanomas (n=16)		25% effective, I patient patrial response, 3 individuals stable disease		

Table 5. Publications augmenting CD27 co-stimulation for immunotherapy

dpi=days post infection, dpa=days post activation, dpt=days post transfer, pdc=days post challenge

University Library

MINERVA A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Grant, EJ; Nuessing, S; Sant, S; Clemens, EB; Kedzierska, K

Title:

The role of CD27 in anti-viral T-cell immunity

Date:

2017-02-01

Citation:

Grant, EJ; Nuessing, S; Sant, S; Clemens, EB; Kedzierska, K, The role of CD27 in anti-viral T-cell immunity, CURRENT OPINION IN VIROLOGY, 2017, 22 pp. 77 - 88

Persistent Link: http://hdl.handle.net/11343/221775

File Description: Accepted version