
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

The role of CD27 in anti-viral T-cell immunity 

Emma J. Grant
1, 2*

, Simone Nüssing
1*

, Sneha Sant
1
, E Bridie Clemens

1# 
and Katherine

Kedzierska
1# 

1
Department of Microbiology and Immunology, at the Peter Doherty Institute for 

Infection and Immunity, The University of Melbourne, Melbourne 3000, VIC, 

Australia; 
2
Institute of Infection and Immunity, Cardiff University School of 

Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; *equal contribution; 

#
equal contribution. 

To whom correspondence should be addressed: 

#Katherine Kedzierska, kkedz@unimelb.edu.au, Department of Microbiology and 

Immunology, University of Melbourne, Vic 3010, Australia, Ph: (613) 8344 7962. 

mailto:kkedz@unimelb.edu.au
http://ees.elsevier.com/coviro/viewRCResults.aspx?pdf=1&docID=1701&rev=1&fileID=19124&msid={0FB7475F-2143-41CB-A120-C68E401E8D44}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2 

 

Abstract  

 

CD27 is a co-stimulatory immune-checkpoint receptor, constitutively expressed on a 

broad range of T-cells (αβ and γδ), NK cells and B-cells. Ligation of CD27 with 

CD70 results in potent co-stimulatory effects. In mice, co-stimulation of CD8
+
 T-cells 

through CD27 promotes immune activation and enhances primary, secondary, 

memory and recall responses towards viral infections. Limited in vitro human studies 

support mouse experiments and show that CD27 co-stimulation enhances antiviral T-

cell immunity. Given the potent co-stimulatory effects of CD27, manipulating CD27 

signalling is of interest for viral, autoimmune and anti-tumour immunotherapies. This 

review focuses on the role of CD27 co-stimulation in anti-viral T-cell immunity and 

discusses clinical studies utilising CD27 co-stimulation pathway for anti-viral, anti-

tumour and autoimmune immunotherapy.  
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 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 3 

Introduction 

CD27 is a receptor of the tumor necrosis factor (TNF) superfamily, expressed on a 

broad range of lymphocytes, including T-cells (αβ and γδ) [1-3], B-cells [4-6] and 

natural killer (NK)-cells [7,8]. In T-cells, binding of CD27 to its ligand CD70 results 

in activation of both canonical and alternative NFκB pathways [9,10] that mediate 

signalling and downstream co-stimulatory effects and provide potent enhancement of 

T-cell responses [11,12]. CD27 co-stimulation promotes immune responses and 

enhances primary, secondary, memory and recall CD8
+
 T-cell responses towards 

acute viral infections in murine models [10,13]. However, the role of CD27 in human 

lymphocytes is understudied. Due to its strong co-stimulatory effects, the 

CD27/CD70 pathway has recently gained interest as an immunotherapeutic target for 

anti-viral immunity. Manipulation of this pathway may also be beneficial for the 

control of autoimmune diseases or tumour immunotherapy. This review summarizes 

the impact of CD27 co-stimulation in anti-viral T-cell immunity and discusses its 

potential for immunotherapies. 

 

CD27 expression and its potent role in T-cell activation 

(i) Optimal T-cell activation requires 3 signals 

Following thymic selection, naive circulating T-cells survey for foreign antigens 

displayed by professional antigen presenting cells (APCs), mainly dendritic cells 

(DCs) [14]. During infection, DCs acquire antigens, either through direct infection or 

uptake of material from infected tissues, become activated and migrate to secondary 

lymphoid tissues where they present pathogen-derived peptides to circulating T-cells. 

DCs typically require an initial interaction with antigen-specific helper CD4
+
 T-cells 

[15,16] before they are licensed to activate naïve CD8
+
 T-cells [16,17]). Effective 

activation of naïve CD8
+
 T-cells by licensed DCs requires three distinct signals 

[18,19]. CD8
+
 T-cells recognize the pMHCI complex through use of their T-cell 

receptors (TCRs) to provide the first signal [20]. The second signal is provided by co-

stimulation via the interaction of TNF-TNFR family receptors [21] and CD28-

CD80/86 [22] on the CD8
+
 T-cell and DCs [19,23]. Lastly, pro-inflammatory 

cytokines (mainly IL-12 and Type I IFN) present in the environment during priming 

provide a third signal that can influence subsequent T-cell differentiation pathways to 

ensure a productive response [24]. The presence of all three signals activates a 
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cascade of signalling pathways, culminating in the activation and translocation of 

NFκB to the nucleus of T-cells [25]. This induces T-cell proliferation and 

differentiation, resulting in the acquisition of effector functions and modification of 

cell surface markers, including cytokine/chemokine receptors and integrins that 

enable migration to the site of infection [26].  

 

(ii) The role of CD27 co-stimulation in T-cell activation 

While studies to date have focused predominantly on co-stimulation via CD28, more 

recently the role of CD27 co-stimulation in T-cell activation has been acknowledged 

[9,13]. CD27, first characterised by van Lier et al [27] in 1987, is a co-stimulatory 

molecule in both mice [28] and humans [27,29]. It is a transmembrane homodimer of 

the TNFR family [9,30,31], constitutively expressed on the surface of progenitor and 

naïve T-cells, as well as subsets of NK- and B-cells [9]. Its ligand, CD70, is inducible 

on APCs, DCs [32], B cells (triggered by TLR4/9, IFNγ and CD40) and T-cells 

(following TCR interactions in the presence of CD28 cross-linking) and is 

constitutively expressed on smooth muscle cells [9]. Following the interaction 

between CD27 and CD70, TNFR-associated factor (TRAFs) adaptors are recruited 

[33], which then activate CD8
+
 T-cells through both canonical and alternative NFκB 

pathways [9,10]. The CD27-CD70 interaction also induces the up-regulation of anti-

apoptotic molecules (BCL-XL) [34] and cytokine receptors (IL-2Rα and IL-12Rβ), 

thus increasing CD8
+
 T-cell sensitivity to cytokines [9]. This interaction facilitates 

activation of JuN N-terminal kinase (JNK), activator protein 1 (Ap1), eRK and 

mitogen activated protein (MAP) kinases to promote cytokine production including: 

IL-2, IL-4, IL-5, IL-6, IL-12, IFNγ and TNFα [9]. CD27 expression on T-cells 

increases following activation and is accompanied by release of a soluble extracellular 

part of the molecule [35]. Loss of CD27 expression on T-cells is observed during 

prolonged stimulation and is associated with fully a differentiated effector phenotype. 

 

CD27 co-stimulation enhances antiviral T-cell immunity  

Analyses in mice suggest that co-stimulation through CD27 is important during T-cell 

development [36], primary activation [11,37*-41], transition into memory 

[11,37*,42], secondary recall and the long-term survival of T-cells [13,31] 

(summarised in Figure 1 and Table 1). Gravestein et al [36] observed CD27 
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expression on thymocytes during the double negative (DN) stage of development and 

using RAG
-/-

 mice showed that blocking CD27 co-stimulation with a mAb decreased 

the transition of DN to double positive (DP) thymocytes, thus revealing that CD27 co-

stimulation is important in T-cell development.  

 

(i) CD27 co-stimulation enhances primary anti-viral CD8
+
 T-cell responses 

Published evidence reveals the importance of CD27 co-stimulation during primary 

viral infection (Table 1). Willoughby et al [37*] and Rowley et al [11] adoptively 

transferred OT-1 CD8
+
 T-cells into naïve mice and activated them with OVA peptide 

in the presence of a CD27-agonist antibody. Augmented CD27 co-stimulation 

increased the expansion of epitope-specific CD8
+
 T-cells 50-fold [37*], improved 

effector function and enhanced cytotoxicity in response to re-stimulation with peptide 

[11]. Similarly, using CD70-transgenic mice with constitutive CD70 expression on T-

cells [41], CD27 co-stimulation resulted in a ~2-fold increase in the number and 

function of D
b
NP366

+
CD8

+
 T-cells and accelerated viral clearance following influenza 

A virus (IAV) infection. Conversely, in CD27
-/-

 mice, the number of total 

D
b
NP366

+
CD8

+
 T-cells was decreased in the lungs at 10 days after IAV infection [38]. 

Furthermore, T-cells isolated from CD27
-/-

 mice were less likely to proliferate 

compared to T-cells isolated from wild-type (WT) mice following anti-CD3 cross-

linking in vitro. Interestingly, anti-CD28 co-stimulation augmented this proliferation, 

but not to WT levels, suggesting that CD27 and CD28 co-stimulation are not 

redundant and are qualitatively different. CD70
-/-

 mice infected with acute LCMV 

displayed a <2-fold decrease in total D
b
NP396

+
CD8

+
 T-cells 6-8 days post infection 

(dpi) and a ~5-fold reduction in viral clearance compared to WT mice [39*]. 

Similarly, CD8
+
 T-cells from WT mice infected with acute LCMV and treated with a 

blocking CD70 mAb [40] were less functional upon peptide re-simulation at 7dpi. 

Collectively, these studies demonstrate that CD27 co-stimulation is important for 

CD8
+
 T-cell proliferation, cytotoxicity and function and enhances viral clearance 

during primary infection with acute IAV and LCMV.  

 

(ii) CD27 co-stimulation augments memory CD8
+
 T-cell pools 

CD27 co-stimulation also increases the magnitude of memory epitope-specific CD8
+
 

T-cell populations. In adoptive transfer experiments with OT-1 CD8
+
 T-cells, 
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augmenting CD27 co-stimulation during priming increased the proportion of OT-1  

CD8
+
 T-cells >30-fold at 23 days post-activation (dpa) [11]. Conversely, chronic 

CD27 co-stimulation decreased NP366
+
CD8

+
 T-cell numbers 4-fold 57dpi with IAV 

[41]. The increase in epitope-specific memory with CD27 co-stimulation is likely to 

result from enhanced IL-7 signalling, as augmentation of CD27 co-stimulation retains 

IL-7Rα expression on T cells [37*], while blocking CD27 co-stimulation decreases 

IL-7Rα expression [42]. IL-7, produced by non-hematopoietic cells (e.g. stromal and 

epithelial cells) and immune cells such as DCs (reviewed in [43]) is functionally 

important for memory cell development and survival [44]. In this way, CD27 co-

stimulation increases sensitivity to IL-7 via IL-7Rα expression and enhances epitope-

specific CD8
+
 T-cell transition into memory.  

 

(iii) CD8
+
 T-cell recall is increased with CD27 co-stimulation 

CD27 co-stimulation also enhances CD8
+
 T-cell recall (Table 1). Blocking CD27 co-

stimulation in CD27
-/-

 mice delayed CD8
+
 T-cell recall following secondary IAV 

infection, with an early reduction in virus-specific CD8
+
 T-cells observed 5dpi [38]. 

However, this difference was reduced by 7dpi. Conversely, augmenting CD27 co-

stimulation either during priming [11] or recall [45*] enhanced secondary responses 

by OT-I CD8
+
 T cells to OVA peptide. Interestingly, constitutive CD27 co-

stimulation resulted in diminished T cell responses and impaired protection following 

secondary challenge with IAV [41]. These data show that enhanced, but not 

constitutive, CD27 co-stimulation during either primary or secondary infection can 

augment memory formation and recall responses.  

 

(iv) Effects of CD27 co-stimulation in humans  

Despite numerous murine studies, little is known about the role of CD27 co-

stimulation in human T-cells (Table 2). In vitro findings show that augmenting CD27 

co-stimulation by CD27 cross-linking [46,47**] or the addition of Colo679-CD70-

expressing cells [48] increased proliferation and function (IFNγ/TNF expression) of 

human T-cells 2- to 4-fold following non-specific activation [46,48]. Expectedly, 

gene expression profiling showed activation and proliferation profiles in T-cells with 

enhanced CD27 co-stimulation [47**]. Two independent studies also correlated the 

loss of CD27 co-stimulation with disease severity. A total of 8 patients with severe 

infectious mononucleosis (IM) and complications including EBV-associated 
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proliferative disorder and HLH malignant lymphoma, had mutations in their CD27 

gene [49,50], resulting in loss of expression and thus CD27 co-stimulation. These 

studies suggest that CD27 co-stimulation is important in controlling chronic EBV 

infection and that CD27 co-stimulation has similar effects in mice and humans, and 

thus CD27 is important for effective activation of human CD8
+
 T-cells.  

 

CD27 expression on γδ T-cells, B-cells and NK-cells 

(i) Expression of CD27 on murine and human γδ T-cells 

Recently, it became apparent that two functionally distinct subsets of γδ T-cells 

display differential expression of CD27. Although both CD27
+
 and CD27

-
 subtypes 

produce IFN-γ, only CD27
-
 γδ T-cells produce IL-17 following in vitro stimulation 

with phorbol 12-myristate 13-acetate (PMA) and ionomycin [1]. This effect of CD27 

expression on γδ T-cells was characterised on thymocytes derived from foetal organ 

thymic cultures (FTOC) and showed that CD27
+
 γδ thymocytes had higher Ifng 

mRNA expression, while CD27
-
 γδ thymocytes had decreased Il17 expression (Table 

3). Furthermore, CD27
-
 γδ T-cells isolated from the spleen, lymph nodes (LN), lung 

or gut were CD44
hi

 and CD62L
lo

, whereas CD27
+
 γδ T-cells had lower CD44 

expression, supporting CD27 as a marker of γδ T-cell differentiation with distinct 

functional outcomes [1]. Lombes et al [3*] reported that innate-like IL-17-producing 

CD27
-
 γδ T-cells correspond to Ly-6C

-
CD44

hi
 γδ T-cells, as they proliferate in 

secondary lymphoid organs and thus have self-renewing, long-living properties. 

 The impact of the CD27 co-stimulatory pathway in peripheral γδ T-cells 

remains largely unknown. Lombes et al [3*] suggested that peripheral CD27
+
 γδ T-

cells are similar to αβ T-cells, by having distinct naïve-like and memory-like subsets 

with characteristic phenotypic, functional, and homeostatic outcomes, and as such, 

CD27 co-stimulation may affect the CD27
+
 γδ T-cells in a similar manner. This was 

addressed by Ribot and colleagues [51], who stimulated murine CD27
+
 γδ T-cells in 

vitro with sCD70 and showed increased IFNγ/TNF production with CD27 co-

stimulation. Additionally, accumulation of IFNγ-producing CD27
+
 γδ T-cells during 

MuHV-4 herpes or malaria infection was dependent on CD27 expression [51], 

emphasising the importance of CD27 for both anti-viral and anti-parasitic immunity 

(Table 3). Finally, to our knowledge, only one study has explored the co-stimulatory 

role of CD27 on human peripheral blood γδ T-cells. deBarros et al [52] showed that 
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interaction of CD27 with its ligand CD70 resulted in increased TCR-dependent 

activation in γ9δ2 T-cell lines, increased proliferation, enhanced survival and cytokine 

production, establishing the importance of CD27 co-stimulation on the functional 

differentiation of human γ9δ2 T-cells (Table 3).  Since γδ T-cells contribute to anti-

viral and anti-cancer immunity, it is important to elucidate the role of CD27 co-

stimulation and its potential role for future immunotherapies. 

 

(ii) CD27 as a memory B-cell marker 

Like T-cells, human B-cells can be subdivided according to their CD27 expression. 

However, unlike T-cells, naïve B-cells do not express CD27 and instead expression of 

CD27 is associated with memory. Interestingly, CD27
-
 B-cells populate the non-

mutated V gene compartment of naïve-like B-cells [4], while expression of CD27 

(CD27
+
) is commonly used to identify human memory B-cells with mutated V genes 

[4,5]. Circulating CD27
+
 memory B-cells can be further subdivided by their relative 

expression of the immunoglobulin (Ig) antibodies IgM and IgD [4,53]. Up to 40% of 

human peripheral B-cells express CD27 and show mutated variable regions in their Ig 

genes [6], making the CD27 receptor an interesting marker for B-cell subsetting. 

However, a minor CD27
-
 memory B-cell subset makes up 1-4% of all peripheral B-

cells [6]. Therefore, CD27 expression alone is insufficient for B-cell memory 

identification. The function of CD27 co-stimulation on human memory B-cells has 

not been characterised, however, it is thought that, similar to T-cells, CD27-receptor 

signalling in B-cells can enhance survival [12]. It would be interesting to understand 

whether CD27 co-stimulation on B-cells is beneficial for maintaining lifelong 

serological memory by promoting the survival of memory B-cells. As such, 

determining the functional role of CD27 co-stimulation for B-cells may provide 

further potential for CD27-based immunotherapies. 

 

(iii) CD27 expression marks functionally distinct NK-cells  

NK-cells can also be sub-divided based on CD27 expression in both mice and humans 

[7,8]. In mice, the presence or absence of CD27 expression results in distinct effector 

functions, proliferative capacities, responsiveness, interaction with DCs, and 

migratory activity of NK-cells [7]. Mac1
high

CD27
+
 murine NK-cells show increased 

IFNγ production compared to CD27
-
 NK-cells following activation with the NKG2D 
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ligand or IL-12 and IL-18. CD27
+
 NK-cells are predominately located in lymphoid 

organs and are considered to be naïve, while CD27
-
 NK-cells are located in the lung 

or peripheral blood and represent long-lived or senescent NK-cells [7]. 

 Accordingly, two subsets of NK-cells, based on CD27 expression, are found 

in humans [8]. The majority of circulating human peripheral blood NK-cells are 

CD27
-
CD56

dim
, and express high levels of perforin and granzyme B, however a 

subset of CD27
+
 NK-cells are identified as CD56

dim/bright
 with low levels of perforin 

and granzyme B [8]. This suggests that, similar to T-cells, the presence or absence of 

CD27 on NK-cells allows the identification of cytotoxic effector cells within the 

known mature NK-cell subsets. 

 

Potential for manipulating CD27 co-stimulation for immunotherapy 

The potent co-stimulatory capacity of CD27 and its expression across different 

subsets makes the CD27/CD70 signalling pathway a desirable target for 

immunotherapy. Different strategies of blocking or augmenting CD27/CD70 co-

stimulation and the resultant outcomes for acute or chronic viral infections, 

autoimmune diseases, tumours, are discussed. 

 

(i) Blocking CD27 co-stimulation may protect against immunopathology during 

chronic viral infections or autoimmunity. 

Although beneficial during acute infections, CD27 co-stimulation may be detrimental 

during autoimmune or chronic viral infections [10,31] (Table 4). Lymphocytes 

derived from patients with the autoimmune disease systemic lupus erythematosus 

(SLE) [54] or rheumatoid arthritis [55] have a ~2-fold increase in CD70 expression on 

CD4
+
 T-cells, compared to healthy individuals. Since CD27 co-stimulation influences 

the production of pro-inflammatory cytokines, it might contribute to the pathology 

associated with inflammatory autoimmune diseases [10]. Indeed, SJL/J [56], DBA/1 

[57] and RAG
-/-

 [58] mice activated to induce disease in the absence of CD27-

stimulation had a reduction (~4-times) in clinical scores [9,30], suggesting that CD27 

co-stimulation might be detrimental during particular autoimmune diseases, and that 

blocking CD27 co-stimulation may be a feasible option for future autoimmune 

immunotherapies (Table 4). 
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 During chronic viral infections, T-cells become “exhausted” [59]. Strikingly, 

increased expression of CD70 and decreased CD27 expression was observed directly 

ex vivo on naïve CD19
+
CD27

-
 B-cells [60] and CD3

+
 T-cells [61] isolated from HIV-

infected individuals compared to healthy donors, suggesting that prolonged CD27 co-

stimulation may contribute to immunopathology during certain chronic infections. 

Using a transgenic mouse model with constitutive CD70 expression on T-cells to 

mimic the expression patterns observed in chronic infections, it was found that CD8
+
 

T-cells subjected to continuous CD27 co-stimulation displayed enhanced response 

magnitude to influenza infection compared to WT mice [41]. However, these cells 

exhibited an exhausted phenotype, as measured by CD69
hi

PD-1
hi

IL7R
lo

 expression, 

and decreased IL-2/TNF production. Interestingly, CD70 blockade in mice during 

chronic LCMV (LC-13) infection increased numbers of IFNγ-producing virus-

specific CD8
+
 T-cells, but did not alter their exhausted phenotype [40], and 

accelerated viral clearance [62]. Thus, uncontrolled CD27 co-stimulation deregulates 

effector T cell differentiation, promotes exhaustion and contributes to the detrimental 

outcomes of chronic infections [40,62]. CD27 co-stimulation thus requires careful 

regulation [10]. As such, there is emerging interest in blocking CD27 co-stimulation 

in chronic viral infections and inflammatory disease [9,31]. 

 

 (ii) Augmenting CD27 co-stimulation may help in cellular immunity to cancer 

CD70 is highly expressed in multiple cancers including thymic carcinoma [38], 

cultivated brain tumours [63] and renal carcinoma [64]. Hence, CD70 and CD27 are 

considered as targets for immunotherapy [31,65-68]. Augmenting CD27 co-

stimulation through use of CD70-secreting or expressing tumour cells in mice has 

resulted in potent enhancement of cell-mediated anti-tumour immunity to reduce or 

prevent tumour development, even at locations distal to the treatment site [69,70] 

(Table 5). This suggests that augmenting CD27 co-stimulation enhances systemic 

anti-tumour immunity and thus may be important for future immunotherapies. Indeed, 

a promising agonist anti-CD27 antibody is currently in phase I clinical trials. This 

immunotherapy, known as Varlilumab, is manufactured by Celldex Therapeutics and 

is being trialled against solid tumours and lymphoid malignancies [71] (Table 5). 

Although preliminary, this trial is highly promising and proves that manipulating 

CD27 co-stimulation may be an effective and viable anti-tumour immunotherapy, 

possibly in combination with other immunotherapies such as PD-1 blockade [72**]. 
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Conclusion 

CD27 is expressed on the majority of human T-cells and B-cells. Binding of CD27 to 

its only known ligand, CD70, has potent co-stimulatory effects, which can be either 

beneficial or detrimental in different circumstances. Due to these potent co-

stimulatory effects, there is a great interest in manipulating CD27 co-stimulation for 

immunotherapy. Blocking CD27 co-stimulation may prevent/reduce the severity of 

chronic viral infections and autoimmune diseases. Conversely, augmenting CD27 co-

stimulation may assist in anti-tumour immunity and may rescue exhausted CD8
+
 T-

cells. Thus, targeting and manipulating the CD27-CD70 immune pathway is an 

exciting and emerging field, with a great promise for novel immunotherapies.  
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Figure Legend 

Figure 1. Effects of CD27 co-stimulation on naïve, effector, and memory CD8
+
 T 

cells. CD27 co-stimulation of naïve CD8
+
 T cells via CD70 expressed on DCs or 

APCs leads to the activation of canonical and non-canonical NF-κB pathways, 

resulting in up-regulation of anti-apoptotic molecules and cytokine receptors. 

Augmented CD27 co-stimulation during primary activation increases a number of 

epitope-specific CD8
+
 T cells, enhanced effector function and retention of IL-7Rα 

expression, thus elevating numbers of CD8
+
 T cells that persist into memory and 

participate in recall responses. Interestingly, chronic CD27 co-stimulation results in 

reduced T cell memory and impaired protection against subsequent virus infection. 
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Diminished CD27 co-stimulation is associated with numerically and functionally 

reduced CD8
+
 T cell responses and decreased memory formation. Given these potent 

effects of CD27 co-stimulation on the magnitude and quality of CD8
+
 T cell 

immunity, manipulating CD27 signalling may prove an effective target of 

immunotherapies not just for viruses, but also chronic diseases and cancer. 
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Highlights  

 CD27 is a co-stimulatory receptor expressed on T-cells, B-cells and NK-cells  

 

 CD27-CD70 co-stimulation enhances primary, memory and recall T-cell 

responses  

 

 Manipulating CD27-CD70 signalling is of interest for a variety of 

immunotherapies  

 

*Highlights (for review)



http://ees.elsevier.com/coviro/download.aspx?id=19126&guid=56faf4fd-b332-49f1-8f14-1ec234435064&scheme=1


Table 1. Publications describing the role of CD27 co-stimulation in mice 

Model Experimental design 
Method of 

detection 
Major findings Key finding Reference 

CD27 co-stimulation is important for T-cell development 

RAG-/-  

 

Block CD27 co-

stimulation with a 

mAb during thymic 

development 
 

Flow-cytometry 
Decreased transition of 

DN to DP thymocytes 

CD27 co-stimulation 

is needed for transition 

of DN to DP 

thymocytes 

Gravestein et 

al, 1996 

[Ref. 36] 

Enhanced CD27 co-stimulation increases primary, memory and recall CD8+ T-cell responses 

OT-1 

and 

C57BL/6 

Naïve OT-1 CD8+ T-

cells were adoptively 

transferred into naïve 

C57BL/6 mice. 

OVA257-264 peptide was 

administered in the 

presence or absence of 

sCD70, or an agonist 

CD27 mAb 

 

Tetramer & 

flow-cytometry 

 

~17-fold increase in the 

proportion of OT-1 

CD8+ T-cells 4, 6 and 

8dpa 
 

Enhanced CD27 co-

stimulation augments 

primary, memory and 

recall CD8+ T-cell 

responses 

Rowley et al, 

2004 

[Ref. 11] 

51Cr killing 

assay 
 

 

>15-fold increase in 

cytotoxicity 10dpa  
 

Tetramer & 

flow-cytometry 

 

~36-fold increase in the 

proportion of OT-1 

CD8+ T-cells at 

memory, 23dpa 
 

Tetramer & 

flow-cytometry 

 

>20-fold increase in 

OT-1 CD8+ T-cells in 

the peripheral blood 

8dpr and ~12-fold 20dpr 
 

OT-1  

and 

C57BL/6 

Naïve OT-1 CD8+ T-

cells were adoptively 

transferred into naïve 

C57BL/6mice and 

activated by OVA 

peptide in the presence 

or absence of sCD70 

Tetramer & 

flow-cytometry 

 

>50-fold increase in 

OT-1 CD8+ T-cells in 

peripheral blood 8dpa 
 

CD27 co-stimulation 

enhances primary and 

memory CD8+ T-cell 

responses Willoughby 

et al, 2014 

[Ref. 37] 

Tetramer-ICS 

& flow 

cytometry 

 

~3-4 fold increase in IL-

2+, IFNγ+ and perforin+ 

OT-1 CD8+ T-cells 

3dpa 
 

Tetramer & 

flow-cytometry 

 

~2-fold increase in the 

number of OT-1 CD8+ 

T-cells in the peripheral 

blood 65dpa  
 

Tetramer & 

flow-cytometry 

 

~6-fold increase in IL-

7Rα expression on OT-

1 CD8+ T-cells 3dpa, 

but ~2-fold 4dpa 
 

Enhanced CD27 co-

stimulation decreases 

IL7Rα down-

regulation 

Transgenic 

mice with 

constitutive 

CD70 

expression 

on T-cells 

WT and transgenic 

mice were infected 

with IAV 

Weight loss 

 

~10% more body 

weight 8-12dpi 
 

Constitutive CD27 co-

stimulation enhances 

primary CD8+ T cell 

responses, but results 

in reduced memory 

formation 

 

Van 

Gisbergen et 

al, 2009 

[Ref. 41] 

qPCR 

 

~2-log decrease in viral 

lung titres 
 

Tetramer & 

flow-cytometry 

 

~2-fold increase in 

NP366-specific CD8+ T-

cells in blood, MLN and 

spleen 10dpi 
 

ICS & flow-

cytometry 

 

2-fold increase in the 

number of IFNγ+ T-cells 

10dpi 
 

Tetramer & 

flow-cytometry 

~4-fold reduction in the 

number of NP366-

specific CD8+ T-cells in 

the spleen 57dpi 

WT or transgenic mice 

were infected with 

Tetramer & 

flow-cytometry 

~4-fold decrease in 

NP366-specific CD8+ T-

Constitutive CD27 co-

stimulation during 
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IAV then challenged 

51-61 days later with a 

serologically distinct 

IAV 

cells in the spleen and 

blood 8dpc 
 

both primary and 

secondary activation 

decreases recall 

ICS and flow-

cytometry 

 

~4-fold decrease in the 

number of IFNγ+ CD8+ 

T-cells 8dpc 
 

CD27-/- 

CD27-/- and WT mice 

were infected with 

IAV 

Tetramer & 

flow-cytometry 

 

~3-fold decrease in total 

and NP336-specific CD8+ 

T-cells, in the lung 

10dpi 
 

Loss of CD27 co-

stimulation decreases 

CD8+ T-cell 

proliferation 

Hendricks et 

al, 2003 

[Ref. 12] 

CD27-/- or WT mice 

were infected with 

IAV and challenged 6 

weeks later 

Tetramer & 

flow-cytometry 

 

~7-fold and ~14-fold 

decrease in the number 

of total or NP338-specific 

CD8+ T-cells, 

respectively 5dpc. 

Decreased to ~1.5-fold 

7dpc 
 

Loss of CD27 co-

stimulation delays 

recall during 

secondary IAV 

infection 

Purified T-cells from 

WT and CD27-/- mice 

were activated by 

αCD3 cross-linking +/- 

additional αCD28 in 

vitro 

Thymidine 

incorporation 

 

~2-fold decrease in 

proliferation 3dpa for T-

cells from CD27-/- mice 

in the absence of 

αCD28 
 

CD27 and CD28 co-

stimulation are 

qualitatively different 

 

 

αCD28 increases 

proliferation of CD8+ T-

cells from CD27-/- mice, 

but not to same extent 

as WT mice 3dpa 
 

CD70-/- and 

C57BL/6 

CD70-/- or WT mice 

were infected with 

acute LCMV 

Tetramers 

 

<2-fold decrease in total 

and NP396-specific CD8+ 

T-cells, 6-8dpi 
 

Loss of CD27 co-

stimulation decreases 

epitope-specific 

proliferation, 

differentiation and 

function, and reduces 

viral clearance 

Munitic et al, 

2013 

[Ref. 39] 

Flow cytometry 

 

Decreased 

differentiation by 

CD44hi and CD62L 

expression 8dpi 
 

ICS & flow-

cytometry 

 

~2-fold reduction in 

IFNγ, TNF and IL-2 6-

8dpi  
 

qRT-PCR 

 

~5-fold reduction in 

viral clearance 6 and 

8dpi 
 

C57BL/6 

C57BL/6 mice were 

infected with acute 

LCMV in the absence 

or presence of a CD70 

blocking mAb 

ICS & flow-

cytometry 

 

~6-fold reduction in the 

proportion and numbers 

of IFNγ+ TNF+ cells 

7dpi. 
 

Loss of CD27 co-

stimulation decreases 

the function of 

epitope-specific CD8+ 

T-cells 

Penaloza-

McMaster et 

al, 2011 

[Ref. 40] 

OT-1 

And 

C57BL/6 

OT-1 CD8+ T-cells 

were transferred into 

C57BL/6 mice. Mice 

were vaccinated with 

OVA-vac and treated 

with or without an 

αCD70- blocking mAb  

Tetramer & 

flow-cytometry 

 

~5-fold decrease in the 

number of resting 

memory OT-1 CD8+ T-

cells 90dpa 
 

Blocking CD27 co-

stimulation decreases 

the number of IL-7Rα 

expressing memory 

precursor cells 

Dong et al, 

2012 

[Ref. 42] 

Flow-cytometry 

 

~2-fold decrease in 

IL7Rα expression 7dpa 
 

C57BL/6 

 

C57BL/6 mice were 

immunised with OVA 

peptide and an 

agonistic anti-CD40 

antibody and recalled 

15-48 days later with 

OVA peptide, in the 

absence or presence of 

a CD27 agonist mAb 
 

Tetramer & 

flow-cytometry 

 

~8-fold increase in total 

OVA257-264- specific 

CD8+ T-cells 8dpr 
 Enhanced CD27 co-

stimulation during 

secondary activation 

enhances recall 

Taraban et 

al, 2013 

[Ref. 45] 51Cr killing 

assay 

 

~12-fold increase in 

cytotoxicity 6pdr 
 



IAV=influenza A virus, dpi=days post infection, dpa=days post activation, dpt=days post transfer, pdc=days post challenge, dpr=days post recall 

 



Table 2. Summary of publications describing the role of CD27 co-stimulation on human T-cells 

Model Experimental design Method of detection Major findings Key finding Reference 

CD27 co-stimulation enhances T-cell function in humans 

Human T-

cells 

 

PBMCs were negatively 

enriched for T-cells. 

Stimulated with a suboptimal 

dose of ConA in the presence 

Colo679-CD70+ or Colo679-

CD70- cells 
 

Thymidine incorporation 
~2-fold decrease in 

proliferation 

CD27 co-

stimulation 

increases 

proliferation 

Braun-Falco 

et al, 2001 

[Ref. 48] 

Human T-

cells 

CD3+ T-cells were activated 

by αCD3 cross-linking with 

or without cross-linking 

CD27 with plate bound 

Varlilumab 

cellTitre-Glo 

luminescence assay 

 

4-fold increase in 

proliferation 5pda 
 

Enhanced 

CD27 co-

stimulation 

increases 

proliferation 

and function 

Vitale et al, 

2012 

[Ref. 46] ICS 

 

~2-fold increase in IFNγ 

and TNF production 

2dpa 
 

Human T-

cells 

 

CD3+ T-cells were activated 

by αCD3 cross-linking with 

or without CD27 cross-

linking with plate bound 

Varlilumab 
 

ELISA 

 

~4-fold increase in 

IFNγ, TNF, IL-2 and IL-

13 production 72hpa 
 

Increased 

CD27 co-

stimulation 

enhances 

cytokine 

production 
Ramakrishna 

et al, 2015 

[Ref. 47] 

 

CD3+ T-cells cultures were 

activated with αCD3 cross-

lining with irradiated CD70-

expressing cells 
 

ELISA 

 

~2-fold increase in IFNγ 

and IL-13 production 

72hpa 

 

CD3+ T-cells were activated 

by αCD3 cross-linking with 

or without cross-linking 

CD27 with plate bound 

Varlilumab 
2 

Gene microarray 

CD27 co-stimulation 

resulted in a distinct 

gene expression profile 

CD27 co-

stimulation 

influences 

gene 

expression 

dpa=days post activation, hpa=hours post activation 
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Table 3. Publications investigating the influence of CD27 co-stimulation on γδ T-cells 

Model Experimental design 
Method of 

detection 
Major findings Key finding Reference 

Mouse studies 

C57BL/6 

Total γδ T-cells from spleen 

and LN were stimulated with 

CD3 supplemented with 

sCD70 

CBA and flow 

cytometery 

 

 

Dose dependent increase in 

survival and expression of pro-

inflammatory cytokines 
 

CD27 co-stimulation supported 

survival and proliferation of γδ 

T cells Ribot et al, 

2010 

[Ref. 51] 
WT and 

CD27-/- 

Mice were infected with 

murine herpes virus and 

malaria 

ICS 

 

~ 1 to 4 fold increase in 

proportion IFNγ producing γδ 

T-cells 
 

Loss of CD27 co-stimulation 

decreased IFNγ production 

C57BL/6 

Thymic and splenic γδ T-

cells were isolated from 

embryonic, newborn and 

adult C57BL/6 mice 

Flow cytometery 
90% of γδ thymocytes were 

CD27hi 

 

CD27 expression defines stable 

IFNγ-producing and IL-17-

producing γδ subsets 

Ribot et al, 

2009 

[Ref. 1] 

 

 

WT, TCR α- 

and TCRβ-

deficient, 

CD27–/– 

 

Peripheral γδ T-cells were 

isolated 

Real time PCR 

and flow 

cytometery 

Decrease in IFNγ expression 

levels in peripheral 

 

Loss of CD27 co-stimulation 

decreases IFNγ expression 

FTOC γδ 

thymocytes 

FTOC γδ thymocytes were 

treated with sCD70 and 

immunoglobulin 

Real time PCR 

 

Upregulation of IFNγ in CD27-

expressing γδ-thymocytes and 

down-regulation of IL-17 in 

CD27-negative γδ-thymocytes 
 

Enhanced CD27 co-stimulation 

affected IFN-γ and IL-17 

expression 

Human studies 

γ9δ2 T-cell 

line 

 

γ9δ2 cells were enriched 

from phosphoantigen 

expanded PBMCs. MACS-

sorted γδ T-cells were 

stimulated with 

phosphoantigen in the 

presence of sCD70 or 

CD70 

CFSE and CBA 

Augmented proliferation and 

increase in Th1 effector 

functions 

Enhanced CD27 co-stimulation 

increases proliferation, survival 

and cytokine production 

DeBarros et 

al, 2011 

[Ref. 52] 
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Table 4. Publications blocking CD27 co-stimulation for immunotherapy in mice 

Model Experimental design Method of detection Major findings Key finding Reference 

Blocking CD27 co-stimulation protects against autoimmunity 

SJL/J 

SJL/J mice were injected 

with PLP139 to initiate 
experimental autoimmune 

encephalomyelitis (EAE) 

in the presence or absence 
of αCD70 blocking mAb 

Activity score 

~3-fold decrease in 

mean clinical score 
up to 50dpi 

 

Early blocking 

CD27 co-
stimulation 

reduces EAE a 

murine model of 
multiple sclerosis 

 

Nakajima 

et al, 2000 
[Ref. 56] 

DBA/1 

DBA/1 mice were injected 

with Bovine CII in CFA 

on day 0 and 21 to initiate 
murine induced collagen 

arthritis in the presence of 

an αCD70 blocking 
antibody from day 21 

Clinical score 

 
 

~3-fold reduction in 
clinical score up to 

25 days post 

treatment 
 

Blocking CD27 

co-stimulation 
reduces induced 

collagen arthritis 

in a murine 
model 

 

Oflazoglu 
et al, 2009 

[Ref. 57] 

Histopathology vscore 

 

~1.5-fold reduction 
in histopathology 

score 
 

C57BL/6 

and 

RAG-/- 

 

CD4+CD45RBhi naïve T-

cells from C57BL/6 mice 

were transferred into RAG-

/- mice to initiate 

experimental colitis with 

or without αCD70 
blocking mAb (pre-

symptomatic) 
 

Activity index 

 

~3-fold reduction in 

disease severity 8wpa 
 

Blocking CD27 

co-stimulation 
prevents 

establishment and 

reduces severity 
of experimental 

colitis in a murine 

model of 
inflammatory 

bowel disease 

Manocha 

et al, 2009 

[Ref. 58] 

Histology 

 

~2-fold decrease in 

tissue destruction 

(histology score) 
8wpa 

 

Experimental colitis was 
established and mice were 

treated with or without 

αCD70 blocking mAb 5 
weeks post transfer (post-

symptomatic) 
 

Activity index 

 

~2-fold reduction in 

disease severity 8wpa 
weeks post activation 
 

Histology 

 

~1.5-fold reduction 

in disease severity 

8wpa 
 

Blocking CD27 co-stimulation protects against chronic viral infection 

Transgenic 

mice with 

constitutive 
CD70 

expression 

on T cells 

Naïve mice were assessed 

at 8 weeks of age 
Flow-cytometry 

 

~5-fold increase in 

CD8+ TEM T-cells in 
the spleen with a 

more exhausted 

phenotype including 
increased CD69 and 

PD-1 expression, and 

decreased IL7Rα 
expression 

 

Constitutive 
CD27 co-

stimulation 

deregulates 
differentiation 

Van 

Gisbergen 
et al, 2009 

[Ref. 41] 

 
TEM cells isolated at 30 

weeks of age stimulated 

with PMA/Ionomycin  
 

ICS & flow-cytometry 

 

~2-fold decrease in 

polyfunctionality 

(IL2+TNFα+) of 
CD8+ T-cells 

following 

restimulation 
 

C57BL/6 

Mice were infected with 

chronic LCMV in the 

presence or absence of an 
αCD70 blocking mAb 

ICS & flow-cytometry 

 

~1.5-fold increase in 

the number of IFNγ 
expressing cells 

following 

restimulation with 
peptide in an ICS 

assay 21dpi. <1-fold 

change 7dpi.  
 

Blocking CD27 

co-stimulation 
increases epitope-

specific CD8+ T-

cell numbers 

Penaloza-

McMaster 

et al, 2011 
[Ref. 40] 

C57BL/6 

 

Mice were infected with a 
chronic strain of LCMV in 

the presence or absence of 

an αCD70 blocking mAb 
 

Immunological focus 

assay 

 
~1.5-log decrease in 

viral titres 66dpi 

 

Blocking CD27 
co-stimulation 

increases viral 

clearance 

Matter et 

al, 2006 
[Ref. 62] 

dpi=days post infection, dpa=days post activation, dpt=days post transfer, pdc=days post challenge, wpi=weeks post infection, wpa=weeks post 

activation, TEM=effector memory T-cells 
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Table 5. Publications augmenting CD27 co-stimulation for immunotherapy  

Model Experimental design 
Method of 

detection 
Major findings Key finding Reference 

Augmenting CD27 co-stimulation can rescue exhausted cells 

C57BL/6 

 

TCR-transgenic Mh CD8+ T-
cells were adoptively transferred 

into male MHC-matched bone 

marrow transfer recipients in the 
presence or absence of an 

agonistic CD27 mAb 
 

Thymidine 

incorporation 

~2-fold increase in 
Mh CD8+ T-cell 

proliferation 
Augmenting 

CD27 co-

stimulation in the 

absence of 
inflammation can 

rescue exhausted 

cells 

Buchan et 

al, 2015 
[Ref. 72]  

Additional blockade of PD-1 
ICS & flow-
cytometry 

 

~2-fold increase in 

the proportion of 

IFNγ+ Mh CD8+ T-
cells following 

restimulation with the 

cognate UTY peptide 
 

Augmented CD27 co-stimulation enhances anti-tumour immunity in mice 

BalbC 

 

Mice were injected with live 

tumour-inducing TSA-WT in 

combination with irradiated 
(non-tumour inducing) 

transfected (mock or CD70-

secreting) TSA or MC57 cells 
 

Observation 

~20% increase in 

non-tumour 

development 27dpi 
and ~1.5-fold 

reduction in tumour 

size 28dpi 

Enhancing CD27 

co-stimulation 
increases tumour 

immunogenicity 

 

Cormary et 
al, 2004 

[Ref. 69] 

C57BL/6 

Mice were injected with 
tumour-inducing MC38 cells 

that were uninfected or 

infected with VV-WT or 
VV-CD70+ 

Observation 

 

Complete protection 

against tumour 

development 28dpt Augmented 
CD27 co-

stimulation 

prevents tumour 
formation 

Lorenz et 

al, 1999 

[Ref. 70] 
Mice were vaccinated with 

HBSS or MC38 cells 
infected with VV-CD70+. 

Mice were challenged with 

uninfected MC38 cells on the 
opposite flank 

~8-fold reduction in 

tumour volume on the 
opposite flank 14dpc 

Augmented CD27 co-stimulation increases anti-tumour immunity in humans 

Humans in a 

clinical trial 
treated with 

Varlilumab, 

an αCD27 
agonist mAb 

Humans with non-Hodgkin’s 

lymphoma (n=3)  

Observation 

 

100% effective, 1 

patient partial 

response, 2 patients 
stable disease 

Enhanced CD27 

co-stimulation 

can reduce 
tumours in 

humans 

Varlilumab 

[Ref. 71] 

Humans with renal carcinoma 

(n=15)  

 

40% effective, 1 

individual partial 

response, 3 
experienced stable 

disease 
 

Humans with solid tumours 

(n=25)  

 

16% effective, 4 

patients stable disease 
 

Humans with melanomas 

(n=16)  

 

25% effective, I 
patient patrial 

response, 3 

individuals stable 
disease 

dpi=days post infection, dpa=days post activation, dpt=days post transfer, pdc=days post challenge 
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