270 research outputs found

    Integration of streaming services and TCP data transmission in the Internet

    Get PDF
    We study in this paper the integration of elastic and streaming traffic on a same link in an IP network. We are specifically interested in the computation of the mean bit rate obtained by a data transfer. For this purpose, we consider that the bit rate offered by streaming traffic is low, of the order of magnitude of a small parameter \eps \ll 1 and related to an auxiliary stationary Markovian process (X(t)). Under the assumption that data transfers are exponentially distributed, arrive according to a Poisson process, and share the available bandwidth according to the ideal processor sharing discipline, we derive the mean bit rate of a data transfer as a power series expansion in \eps. Since the system can be described by means of an M/M/1 queue with a time-varying server rate, which depends upon the parameter \eps and process (X(t)), the key issue is to compute an expansion of the area swept under the occupation process of this queue in a busy period. We obtain closed formulas for the power series expansion in \eps of the mean bit rate, which allow us to verify the validity of the so-called reduced service rate at the first order. The second order term yields more insight into the negative impact of the variability of streaming flows

    NOTE ON THE GI/GI/1 QUEUE WITH LCFS-PR OBSERVED AT ARBITRARY TIMES

    Full text link

    Congestion analysis of unsignalized intersections

    Get PDF
    This paper considers an unsignalized intersection used by two traffic streams. A stream of cars is using a primary road, and has priority over the other, low-priority, stream. Cars belonging to the latter stream cross the primary road if the gaps between two subsequent cars on the primary road is larger than their critical headways. Questions that naturally arise are: given the arrival pattern of the cars on the primary road, what is the maximum arrival rate of low-priority cars such that the number of such cars remains stable? In the second place, what can be said about the delay experienced by a typical car at the secondary road? This paper addresses such issues by considering a compact model that sheds light on the dynamics of the considered unsignalized intersection. The model, which is of a queueing-theoretic nature, reveals interesting insights into the impact of the user behavior on the above stability and delay issues. The contribution of this paper is twofold. First, we obtain new results for the aforementioned model with driver impatience. Secondly, we reveal some surprising aspects that have remained unobserved in the existing literature so far, many of which are caused by the fact that the capacity of the minor road cannot be expressed in terms of the \emph{mean} gap size; instead more detailed characteristics of the critical headway distribution play a role.Comment: This paper appeared in the proceedings of the 8th International Conference on Communication Systems and Networks (COMSNETS), 5-10 Jan. 2016. A related but more extended paper which analyses a more general model than the one in the present paper can be also found on arXiv:1802.0673

    Note on the GI/GI/1 queue with LCFS-PR observed at arbitrary times

    Get PDF
    Consider the GI/GI/1 queue with the Last-Come First-Served Preemptive-Resume service discipline. We give intuitive explanations for (i) the geometric nature of the stationary queue length distribution and (ii) the mutual independence of the residual service requirements of the customers in the queue, both considered at arbitrary time points. These distributions have previously been established in the literature by either first considering the system at arrival instants or using balance equations. Our direct arguments provide further understanding of (i) and (ii)

    Sojourn times in non-homogeneous QBD processes with processor sharing

    Get PDF
    We study sojourn times of customers in a processor sharing model with a service rate that varies over time, depending on the number of customers and on the state of a random environment. An explicit expression is derived for the Laplace-Stieltjes transform of the sojourn time conditional on the state upon arrival and the amount of work brought into the system. Particular attention is given to the conditional mean sojourn time of a customer as a function of his required amount of work, and we establish the existence of an asymptote as the amount of work tends to infinity. The method of random time change is then extended to include the possibility of a varying service rate. By means of this method, we explain the well-established proportionality between the conditional mean sojourn time and required amount of work in processor sharing queues without random environment. Based on numerical experiments, we propose an approximation for the conditional mean sojourn time. Although first presented for exponentially distributed service requirements, the analysis is shown to extend to phase-type services. The service discipline of discriminatory processor sharing is also shown to fall within the framework

    Sojourn times in a processor sharing queue with service interruptions

    Get PDF
    • 

    corecore