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ABSTRACT

Consider the GI/GI/1 queue with the Last-Come First-Served Preemptive-Resume
service discipline. We give intuitive explanations for (i) the geometric nature of
the stationary queue length distribution and (ii) the mutual independence of the
residual service requirements of the customers in the queue, both considered at
arbitrary time points. These distributions have previously been established in the
literature by either �rst considering the system at arrival instants or using balance
equations. Our direct arguments provide further understanding of (i) and (ii).

2000 Mathematics Subject Classi�cation: 60K25, 68M20, 90B22.
Keywords & Phrases: Last-Come First-Served Preemptive-Resume, geometric
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Note: The work was carried out within PNA 2.1.

1 Introduction

The steady-state distributions of queue length and residual service requirements of the
customers in the GI/GI/1 queue with the LCFS-PR (Last-Come First-Served Preemptive-
Resume) service discipline are well-known. The distribution of the queue length considered
only at arrival (or departure) instants is geometric and the remaining service requirements of
the customers are i.i.d. (independent and identically distributed). At arbitrary time instants,
the queue length distribution is geometric too | except for the probability of an empty queue
| with the same parameter as that at arrival (and departure) instants. Furthermore, the
remaining service requirements of all customers but the one in service are i.i.d. with the same
distribution as before. The remaining service requirement of the customer in service has the
forward recurrence distribution of the service requirements and is independent of the queue
length and the other service requirements.
In the queueing literature (see below for a short overview) the distributions at arbitrary

times have been derived either from the steady-state distributions at arrival and/or depar-
ture instants or by solving the steady-state balance equations. Our purpose is to give direct
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arguments that lead to these time-average distributions and at the same time provide under-
standing of the results. Our arguments rely on basic renewal theory.
Let us briey review the literature on the LCFS-PR discipline. For the case of Poisson

arrivals the joint distribution of the number of customers in the system and their residual
service requirements was derived by Kelly [8]. Fakinos [4] extended the results to general
interarrival time distributions, by deriving the joint distribution of the queue length and the
remaining service requirements at arrival instants. The proofs are based on the analysis of
ascending ladder indices (Kleinrock [10, p. 309]). Fakinos [4] further remarked that at de-
parture instants these distributions must be the same as at arrival instants, a fact that was
proved by Yamazaki [19]. Direct and insightful arguments for these �ndings were provided
later by Fakinos [5]. The corresponding distributions at arbitrary time instants were �rst
derived by Yamazaki [20] and for a more general model, with queue-dependent services, by
Fakinos [6] (both used balance equations). Shanthikumar and Sumita [16] considered gener-
alizations in several directions (interarrival times not i.i.d. and queue-dependent acceptance
probabilities, more general service disciplines). Using sample-path arguments and renewal
theory they related time-averages and customer-averages. Part of our approach relies on sim-
ilar arguments. The analysis of the LCFS-PR discipline proved to be very useful for studying
the workload distribution in queues. Fakinos [4] already observed that his results gave new
insight into the workload distribution in the GI/GI/1 queue. Cooper and Niu [3] exploited
the special case with Poisson arrivals to explain Bene�s's inversion of the Pollaczek-Khintchine
formula. Niu [13] gave representations for the workload in the GI/GI/1 queue.
The structure of the paper is as follows. In Section 2 we specify the model and provide a

preliminary analysis of the sojourn time of customers in the system. In Section 3 the geometric
nature of the queue length distribution at arbitrary times is explained and in Section 4 we
extend the analysis to the residual service requirements of customers. In Section 5 we briey
comment on the special case of exponentially distributed service requirements. Section 6
concludes the paper.

2 Description of the model and preliminary analysis

Let the cumulative distribution functions of the interarrival times and the service require-
ments be denoted by A(x); x � 0, and B(x); x � 0, respectively, with A(0+) = B(0+) = 0.
We assume that the mean interarrival time a and the mean service requirement b are �nite
and that the queue is stable, i.e. a > b.
In the LCFS-PR discipline, a newly arriving customer is immediately taken into service.

If upon arrival of the new customer there is a customer in service, then this service is inter-
rupted, to be resumed at the moment that the new customer leaves the system. Note that
the new customer's service can also be interrupted by subsequently arriving customers. The
total sojourn time of a customer equals the time needed to decrease the amount of work in the
system by a random amount distributed according to B(x) (the customer's service require-
ment), starting just after an arrival. Thus, the sojourn time of any customer is distributed as
the busy period of the GI/GI/1 queue and, moreover, it is independent of previous arrivals
and service requirements. In particular, the sojourn time is independent of the number of
customers found in the system.
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Figure 1: Customer's sojourn time

To facilitate the presentation it is convenient to decompose the sojourn time as is done
below. This decomposition is well-known for the busy period of the GI/GI/1 queue, but in
order to set the notation we give the decomposition in detail. In Figure 1 a typical sojourn
time is depicted. Let B be the service requirement of an arriving customer (which we will
indicate by �) and, for concreteness, let n � 0 be the number of customers present just
previous to the arrival. Immediately upon arrival, customer � is taken into service. Let the
time until the next arrival be denoted by A0, clearly A0 has cumulative distribution function
A(x). If B � A0 then the service of customer � is not interrupted and its sojourn time S
equals B. An example of the case when B > A0 is depicted in Figure 1. The arrow pointing
upward (just after A0 has elapsed) indicates that at that time the number of customers in
the system is increased from n+ 1 to n+ 2. The service of customer � is interrupted at that
moment, and is resumed as soon as the number of customers decreases again from n+ 2 to
n+ 1 (in Figure 1 this is indicated by a downward arrow). The length of this interruption,
which we denote by S1, equals the sojourn time of the customer that entered after A0. By
the arguments given above, S1 is distributed as the busy period of the GI/GI/1 queue. At
the end of S1 the service of customer � is resumed until the next arrival, this period of service
is denoted by A1. Note that, in general, A1 is not distributed according to A(x), since at the
end of the busy period S1 part of the current interarrival time has already elapsed. Instead,
A1 is distributed as the idle time between two busy periods in the GI/GI/1 queue, see for
instance Cohen [1, p. 283]. At the end of A1, the service of customer � is interrupted for a
period S2 which is again distributed as a busy period, followed by a period A2 of service for
customer � which is distributed as an idle period, etc. In Figure 1 the service of customer
� is completed during A3, indicated by a downward arrow marked by a � (the number of
customers decreases from n + 1 to n). If there was a customer in service when customer
� arrived (i.e., if n � 1), then this customer's service is resumed, otherwise an idle period
follows until the next arrival.

Remark 2.1 In general the random variables Ak and Sk, k = 1; 2; 3; : : : , are not indepen-
dent, however, the pairs (S1; A1), (S2; A2), (S3; A3), : : : , form an i.i.d. sequence. The pair
(Sk; Ak) constitutes a busy cycle with busy period Sk and idle period Ak, k = 1; 2; : : : , cf.
Cohen [1, p. 283].
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Let �0 := 0 and, for k = 1; 2; 3; : : : ,

�k :=
kX

j=1

Aj�1:

Furthermore, let

I(B) := sup fk : �k < Bg

be the number of times that the service of customer � is interrupted. Then the sojourn time
of customer � is given by

S = B +

I(B)X
k=1

Sk; (2.1)

where by convention we set the empty sum equal to 0. Note that S has the same marginal
distribution as (but, clearly, is not independent of) the Sk.

3 Geometric queue length distribution

We �rst argue that the distribution of the queue length at arbitrary time points is geometric
(apart from the probability of an empty queue). The approach is similar to that used by
several authors (e.g. Kleinrock [10, p. 247], Wol� [18, p. 396], Tijms [17, p. 128]) to determine
the queue length distribution of the GI/M/1 queue at arrival instants. In Section 4 we
show how the arguments can be extended to derive the distribution of the residual service
requirement of the customers in the system.
Suppose we start at time t = 0 with less than k 2 f1; 2; : : : g customers in the system.

Let T1 be the �rst time that an arriving customer increases the number of customers in the
system from k � 1 to k and let T2 be the �rst moment (thereafter) that the number of cus-
tomers decreases again from k to k � 1. Since T2 � T1 is equal to the sojourn time of the
customer that arrived at time T1, it is distributed as the busy period of the GI/GI/1 queue
(cf. Section 2).

Let N(t) be the queue length at time t and let N be distributed according to the stationary
queue length distribution (here de�ned as the C�esaro limit):

P fN = kg = lim
t!1

1

t

Z t

u=0
P fN(u) = kg du; k 2 f0; 1; 2; : : : g :

Before giving a formal derivation we provide the following intuitive argument for the dis-
tribution of N jN > 0 to be geometric. Note that immediately after time T2, the queue
length is less than k, and therefore we might de�ne T3 to be the next time instant at which
the queue length is again equal to k. Necessarily, this must be immediately after an ar-
rival (customers arrive one at a time since we assumed that A(0+) = 0, see Section 6 when
A(0+) > 0). Therefore the processes fN(T1 + t); t � 0g and fN(T3 + t); t � 0g have the same
distribution, until the next visit to level k� 1 after time instants T1 and T3, respectively. Let
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k 2 IN := f1; 2; 3; : : : g and m 2 IN0 := IN [ f0g = f0; 1; 2; : : : g. If we `delete' all periods of
time during which the queue length is less than k and concatenate all periods with at least
k customers, in the newly formed process the steady-state probability of k +m customers
in the system is equal to P fN = k +m jN � kg, and by the arguments given before, this
probability is independent of k. Therefore N jN > 0 must have a geometrical distribution,
see for instance Feller [7, Section XIII.9].

The queue length distribution may be formally derived along the following lines. Let Ck,
k 2 IN, be distributed as the amount of time between two consecutive moments at which the
queue length increases from k � 1 to k. From Remark 2.1 we know that C1 is distributed
as the busy cycle in the GI/GI/1 queue. Since we assumed the queue to be stable we have
E [C1] < 1, cf. Cohen [1, p. 286]. Let �k;j, k 2 IN and j 2 IN0, be the expected amount of
time spent with k + j customers in the system during a period Ck. By the arguments given
in Section 2, �k;j+1 = E [I(B)] �k+1;j (see also Remark 3.1). Moreover, �k;j is independent of
k: �k;j =: �j. Because of the Renewal-Reward theorem, see for instance Ross [14, Theorem
3.16, p. 52],

P fN = j + 1g =
�j

E [C1]
:

Hence, for any k 2 IN,

P fN = k + 1g

P fN = kg
= E [I(B)] =: ;

so that N jN > 0 is geometrically distributed.

Remark 3.1 Note that  is the expected number of \up-crossings" from k to k + 1 during
Ck. After each such up-crossing, the expected amount of time spent with k+ j+1 customers
until the next \down-crossing" to k is �k+1;j, and so �k;j+1 = �k+1;j. Using �k;j = �j this
directly implies �j = j�0, j 2 IN0.

To �nd the complete queue length distribution, it su�ces to note that P fN = 0g = 1� �,
where � := b=a is the tra�c load. And so:

P fN = kg = �(1� )k�1; k 2 IN: (3.1)

Using Little's law, the parameter  can be expressed in terms of the mean busy period
(which equals the mean sojourn time E [S]):

�

1� 
=

1

a
E [S] ;

hence,  = 1� b=E [S].

Remark 3.2 Computing the parameter  is therefore as di�cult as computing the mean
busy period. See Cohen [1, p. 286] for a formal expression of the latter.
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4 Residual service requirements

We extend the results of the previous section, deriving the joint distribution of the queue
length and the residual service requirements of the customers in the system. As before, let N
denote the queue length in steady state and, given that N = n 2 IN, let Xk, k = 1; 2; : : : ; n,
be the service requirement of the k-th customer in the system. By convention, the k-th
customer in the system arrived later than the (k � 1)-st and prior to the (k + 1)-st.

Observation 4.1 The distribution of X1 given that N = 1 equals the excess distribution of

the service requirements:

P fX1 � x jN = 1g = eB(x) := Z x

u=0

1�B(u)

b
du:

To see this, suppose that we only monitor the queue length process N(t) when there is
exactly one customer in the system, and we `delete' all periods during which N(t) 6= 1. What
we observe is the concatenated sequence of service periods of customers that arrived to an
empty system. (In Figure 1 eliminate all periods Sk and the part of A3 after the departure
of customer �, what remains is exactly the service time of customer �.) The latter process is
just a renewal process with renewal times drawn from B(x).eB(x) is the distribution of the residual service requirement of the �rst customer in a busy
period, given that that customer is being served. In addition, it is convenient to introduce
the distribution function of the residual service requirement of the �rst customer in the busy
period when that customer's service has been interrupted:

BI(x1) = P fX1 � x1 jN � 2g :

For n � 2 we write:

P fN = n;X1 � x1;X2 � x2; : : : ;Xn � xng (4.1)

= P fN = n;X2 � x2; : : : ;Xn � xn jN � 2;X1 � x1 gP fN � 2gBI(x1):

Observation 4.2 For n � 2,

P fN = n;X2 � x2; : : : ;Xn � xn jN � 2;X1 � x1 g

= P fN = n;X2 � x2; : : : ;Xn � xn jN � 2g

= P fN = n� 1;X1 � x2; : : : ;Xn�1 � xn jN � 1g :

The �rst equality (independence of X1) follows in the same way as the independence of
the Sk from the state of the system in (2.1) and in Figure 1: the behavior of the queue-
length process above the level 1 (i.e., during a service interruption of the �rst customer) is
independent of the residual service requirement of the �rst customer. A constructive proof
may be given as before by considering the system only at times when there are at least 2
customers in the system and the residual service requirement of the �rst customer is at most
x1. The stochastic evolution of the processes (queue length and residual service requirements
of all customers but the �rst) that result from this construction is independent of x1. Similarly,
the second equality (shift in level) follows from the fact that if we observe the system only at
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times that there are at least k customers, the number of additional customers (besides the
�rst k) and their service requirements evolve stochastically in the same way for all k. Using
Observation 4.2 repeatedly in (4.1) we have for n � 2:

P fN = n;X1 � x1;X2 � x2; : : : ;Xn � xng

= P fN = n� 1;X1 � x2; : : : ;Xn�1 � xn jN � 1gP fN � 2gBI(x1)

= P fN = n� 1;X1 � x2; : : : ;Xn�1 � xng
P fN � 2g

P fN � 1g
BI(x1)

...

=

�
P fN � 2g

P fN � 1g

�n�1

P fX1 � xn; N = 1g
n�1Y
k=1

BI(xk): (4.2)

Setting the empty product equal to 1 and using (3.1) and Observation 4.1 we have for n 2 IN:

P fN = n;X1 � x1; : : : ;Xn � xng = �(1� )n�1 eB(xn) n�1Y
k=1

BI(xk): (4.3)

Remark 4.3 BI(x) can be shown to have the same distribution as the idle period in the
dual queueing model, see Fakinos [6, Section 3].

5 Discussion of the GI/M/1 queue

When the service requirements have an exponential distribution, the evolution of the queue
length is stochastically indistinguishable for all work-conserving service disciplines. There-
fore, the geometric queue length distribution in the GI/M/1 queue with FCFS (First-Come
First-Served) services can be explained from the results for the LCFS-PR discipline. The
GI/M/1 queue was already extensively studied prior to Fakinos' [4] analysis of the GI/GI/1
queue with LCFS-PR. The GI/M/1 queue length distribution at arrival epochs was �rst
obtained by Kendall [9] and from it the distribution at arbitrary time points could be deter-
mined, see for instance Cohen [1, p. 208]. Alternative derivations using the Laplace transform
with respect to time of the transient distribution, were given by Conolly [2], Saaty [15, p. 223]
and Cohen [1, p. 222].

In this case the parameter , which according to Remark 3.1 equals the expected number
of service interruptions of an arbitrary customer, is the unique solution to the equation

 = �(�(1� ));  2 (0; 1);

where 1=� (= b) is the mean service requirement and �(s), Re(s) � 0, is the Laplace Stieltjes
Transform of the interarrival time distribution A(x).
As a consequence of the geometric nature of the steady-state queue length distribution |

both at arrival instants and at arbitrary time points | and the exponential service times,
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various performance measures have the same exponential distribution, with a possible addi-
tional atom at 0. For the sojourn time S (under FCFS), the waiting time W (under FCFS)
and the virtual waiting time V we �nd, for x > 0,

P fS � xg = P fW � x jW > 0g = P fV � x jV > 0g = 1� e�(1� )�x:

All three random variables (W and V conditioned on being positive) can be written as the
sum of a geometric number (with mean 1=(1 � )) of independent and identical exponentially
distributed terms (each with mean 1=�).

Remark 5.1 Many results for the GI/M/1 queue easily generalize to the GI/M/c queue with
c � 1 parallel servers, see also Wol� [18, p. 398]. The queue length distribution at arbitrary
times is geometric for queue sizes of c and larger. The parameter (c) of the geometric tail is
determined by the equation (c) = �(c�(1 � (c))). Also, the steady-state waiting time W(c)

(FCFS) and virtual waiting time V(c) are exponentially distributed (with an atom at 0):

P
�
W(c) � x

��W(c) > 0
	
= P

�
V(c) � x

��V(c) > 0
	
= 1� e�(1� (c))c�x:

The sojourn time is not exponentially distributed. When the number of customers upon
arrival is less than c, the sojourn time equals a single service time, and otherwise it is the
sum of a waiting time (exponential with mean 1=((1 � (c))c�)) and a service time.

6 Concluding remarks

We studied the steady-state distributions of queue length and residual service requirements
at arbitrary times in the GI/GI/1 queue with LCFS-PR. In the queueing literature these dis-
tributions have been obtained either through the distributions at arrival and departure times
or from the balance equations. Our arguments apply directly to the system in continuous
time and explain the geometric nature of the queue length distribution as well as the fact
that residual service requirements are independent and all but one are identically distributed.
The analysis can be extended in a straightforward manner to the case where customers

arrive in batches having a geometric size distribution. This corresponds to allowing A(0+) 2
(0; 1), i.e., interarrival times may be equal to 0. In particular, in Section 3 a batch arrival of
m customers when there are k already present, must be counted as up crossings of the levels
k; k+1; : : : ; k+m�1. Another possible extension is to batch services with general batch size
distributions. This is possible as long as the batch sizes do not depend on the queue length
except for truncation of the batch when an attempt is made at servicing more customers than
those present in the queue, see also Neuts [12, p. 183]. By similar arguments as those used in
this note, a probabilistic treatment of the matrix-geometric theory developed by Neuts [12]
can be given, see Latouche and Ramaswami [11].
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