3 research outputs found

    Transverse rectification in superconducting thin films with arrays of asymmetric defects

    Get PDF
    Superconducting Nb films have been grown on top of arrays of Cu nanotriangles. These asymmetric pinning centers strongly modify the vortex lattice dynamics. Two rectification effects have been observed: (i) longitudinal ratchet effect when the input currents are injected perpendicular to the triangle reflection symmetry axis and (ii) transverse rectification effect hen the input currents are injected parallel to the triangle reflection symmetry axis and the output voltage drop occurs perpendicular to the triangle reflection symmetry axis. Increasing the applied magnetic field, the former shows a change of the output voltage polarity, the transverse output voltage does not show any polarity reversal

    Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals

    Get PDF
    Morphological, microstructural and vibrational properties of hematite (α-FeO) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {-441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effectsConsejo Nacional de Ciencia y Tecnología CB-17948

    Synthesis and Functionalization of Monodisperse Near-ultraviolet and Visible Excitable Multifunctional Eu3+, Bi3+:REVO4 Nanophosphors for Bioimaging and Biosensing Applications

    Get PDF
    Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be tuned by adjusting the amount of PAA. The Eu- Bi-doped REVO4 based nanophosphors show the typical red luminescence of Eu(III), which can be excited through an energy transfer process from the vanadate anions, resulting in a much higher luminescence intensity in comparison to the direct excitation of the europium cations. The incorporation of Bi into the REVO4 structure shifts the original absorption band of the vanadate anions towards longer wavelengths, giving rise to nanophosphors with an excitation maximum at 342 nm, which can also be excited in the visible range. The suitability of such nanophosphors for bioimaging and biosensing applications, as well as their colloidal stability in different buffer media of biological interest, their cytotoxicity, their degradability at low pH, and their uptake by HeLa cells have been evaluated. Their suitability for bioimaging and biosensing applications is also demonstrated.European Union 267226Ministerio de Economía y Competitividad MAT2014-54852-
    corecore