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Abstract 

The crystallization and physical properties of hematite (α-Fe2O3) nanocrystals with a 

rhombohedral shapeand with rounded edges,obtained by thermally induced hydrolysis of 

iron (III) solutions under acidic conditions and a fast nucleation,have beenrevisited in the 

present work. In particular, the morphological and themicrostructural properties of such 

nanocrystals have beeninvestigatedin detail as a function of aging time using 

severalcharacterization techniques, including X-ray diffraction, conventional and high 
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resolution transmission electron microscopyand selected area electron diffraction. Also 

different spectroscopies were employed to study the vibrational, optical and semiconductor 

properties of the obtained materials; concretely, studies of Fourier transform infrared and 

Raman spectroscopies confirmed the hematite phase of the rhombohedral nanocrystals, 

whose vibrational bands are shifted to lower frequencies relative to the bulk hematite 

onesas the aging time is reduced due to phonon confinement effects. Also, the indirect and 

direct transition band gaps were estimated from the UV-visible spectra using Tauc´s plot 

analysis, finding interesting dependences on the crystal size arising from quantum 

confinement and surface effects.  

 

1. Introduction 

The hydrolysis of iron (III) salt solutions thermally induced at temperatures around the 

boiling point, named forced hydrolysis,represents one of the more relevant route to obtain 

size- and shape-selected iron oxide nanomaterials due to its astonishing versatility.
1,2

 In 

fact, the carefully exploration of this synthetic method during more than four decades ago, 

starting with pioneer investigations of Matijević, Ozaki, Ishikawa and other authors
3-6

, has 

been crucial to investigate the crystallization phenomena in supersaturated solutions
7-10

 and 

to study physical properties of the condensed matter at the nanoscale.
11-14

 

 

Among thenanoscopic iron oxidesgrowth by forced hydrolysis, hematite (-Fe2O3) 

nanostructures have received a special attention due to their variety of morphologies and 

sizes,
15-17

and their related optical,
18

 magnetic
19,20

 and photo-catalytic
21,22

 properties,finding 



a wide variety of practical applications.
21,23

 In this regards, the great chemical stability of 

hematite and the vivid blood-red color of hematite become the colloidal -Fe2O3particles 

valued pigments for paintings or to color glass and plastics.
18

 Also, -Fe2O3 materials are 

excellent UV absorbents.
24

In addition, very fine -Fe2O3 nanocrystals exhibit interesting 

magnetic behaviors due to finite-size and surface effects, such as the dependence of the 

Morin transition on the particle size
25,26

  and superparamagnetic and spin glass–like 

behaviors arising from the frustration of the antiferromagnetic coupling at the particle 

surface.
13

On the other hand, hematite is one of the cheapest semiconductor materialsthat 

exhibit a narrow band gap (Eg 2.2 eV) and a absorption of around the 40% of the solar 

spectrum energy.
27

On the other hand, hematite is one of the semiconductor materials less 

harmful to the environment. 

 

-Fe2O3 nanocrystals with few nanometers in size tends to self–assembly in solution 

into nanometric or submicrometric architectures with geometrical morphologies (such as 

spindles
17

, cubes
28

 or tubes
16

)through oriented attachment processes.
29

The size and 

morphology of these attached nanocrystals and their self-assembly can be finely varied with 

the addition of surfactant agents,
30

modifying the hydrothermal conditions
8
and controlling 

the nucleation rate, the concentration of the iron salt and aging time.
31

The driving force of 

the oriented attachment of colloidal nanocrystals is the same as that of other crystal-growth 

mechanisms: a reduction of the crystal free energy leading to a decrease in surface energy, 

which is higher than the volumetric energy contribution.
10

On the other hand,as a 

consequence of the rhombohedral corundum-like crystal structure of hematite, colloidal -



Fe2O3 nanocrystals obtained by the force hydrolysis of Fe
3+

 solutions and with dimensions 

around few tens of nanometers usually growths displaying rhombohedral shapes,
31,32

where 

the exposed faces are dependent on the pH of the reaction media, the presence of foreigner 

ions,
33

the nucleation rate and the ferric ions concentration,
31

 among other parameters of 

synthesis.For instance, the -Fe2O3 nanocrystals obtained by forced hydrolysis of acidic 

ferric chloride solutions tends to display {104} faces,
32,33

 whereas the presence of 

perchlorate ions favored the formation of {102} faces.
33

The synthesis of these 

rhombohedral nanocrystals by forced hydrolysis typically takes several days,
32

 however, 

the reaction time can be reduced with the addition of catalytic reagents such as urea,
10,34

 or 

inducing a fast nucleation process by quickly pouring of the aqueous Fe
3+

solution into 

boiling water under vigorous stirring.
31

 In fact, a fast nucleation process impliesa direct 

transformation of amorphous iron oxides to crystalline hematite nanoparticles without the 

usual formation of intermediate phases (-FeOOH or -FeOOH
31

) commonly observed in 

forced hydrolysis of Fe
3+

 by slow nucleation processes.
31,35

 

 

In the present contribution, the formation of rhombohedral-shape -Fe2O3 

nanocrystals by the forced hydrolysiswith a fast nucleation was revisited, and the evolution 

of the morphological, microstructural, optical and semiconductor properties of such 

nanocrystals were studied and correlated at different stages of the nanocrystal formation 

considering confinement and surface effects in their explanation. 

2. Experimental Section 

2.1. Chemicals 



Anhydrous iron (III) chloride (FeCl3, 97%, Sigma-Aldrich), hydrochloric acid (HCl, 37%, 

Sigma-Aldrich) and absolute ethanol were used without further purification. The water 

added in all experiments was doubly distilled.  

 

2.2. Synthesis of samples 

Hematite nanoparticles were prepared by forced hydrolysisin afast nucleation process 

following the procedure reported by Wang et al.
31

 Concretely, 100 ml of an aqueous 

solution of FeCl3 (0.01M, 0.8109g of FeCl3) were mixed with 400 ml of boiling distilled 

water in presence of HCl (2mM) and under vigorous stirring. Afterwards, the mixture was 

aged at 98º C during a variable aging time, tA: 0, 2, 8, 24, 30, 48, 50 and 56 h. The obtained 

colloidal particles were separated from their mother solution by centrifugation and washed 

several times with doubly distilled water and absolute ethanol. Lastly, a portion of the 

purified powder was re-dispersed in distilled water for further analysis of the samples in 

form of colloids, while the rest of the sample was dried in an oven at 50 °C for 5 h. 

 

2.3. Characterization techniques 

The samples if form of dried powder were studied by X-ray diffraction usingaX’pert 

Pro X-ray diffractometer (PANalitical) and Cu Kα radiation (λ =1.5418 Å).The mean 

coherence lengths, MCLhkl, associated to the four more intense diffraction peaks of 

the samples were estimated from the full width at half maximum (FWHM) of the 

aforesaid peaks with the Scherrer equation:
36 



 

  MCLℎ𝑘𝑙 =  
0.9 λ

β Cos θB
     (1) 

where λ is the X-ray wavelength, β is the broadening of the diffraction peak (after 

subtracting the instrumental broadening) and θB is the Bragg angle at which the 

maximum of the peak appears. The particle size, morphologyand crystalline 

structure of the samples were examined by transmission electron microscopy (TEM) 

using a FEI-TITAN 80-300kV microscope operated at 300 kV. For these analyses, 

conventional TEM, high-resolution transmission electron microscopy (HRTEM) and 

selected area electron diffraction (SAED) characterizations were employed using 

lacey carbon coated copper grids. The experimental data were recorded as digital 

images via a Gatan charge-coupled device (CCD) system and processed using 

Gatan´s Digital Micrograph software package. Ultraviolet-visible (UV-vis) 

absorption spectra in the wavelength range of 300-1100 nm were measured using a 

Thermo Scientific Evolution 60s UV-Vis spectrophotometer and bi-distilled water as 

reference and dispersive medium of samples. The indirect and direct transition band 

gaps, Eg, were estimated from Tauc´s plot analysis using the formula: 

 

𝛼ℎ𝜈 = 𝐴(ℎ𝜈 − 𝐸𝑔)
𝑛

                                               (2) 

 

where is the absorption coefficient,  is the frequency of the photons, A is a constant and 

h is the Plank´s constant. The exponent n is equal to 0.5 for allowed direct transitions and 2 

for allowed indirect transitions. Fourier Transform Infrared (FTIR) spectroscopy 

measurements were carried out using a Nicolet 510 Fourier Transform spectrometer that 



was operated with the samples diluted in KBr pellets. Raman spectra were recorded with a 

Horiba HR800 UV Confocal Raman Microscope using a green laser (532.14nm) working at 

600 line per mm, 100x objective, 20 mW and 0.1 mm pinhole.  

 

3. Results and Discussion 

Fig. 1 depicts XRD patterns of samples obtained at different aging time (tA). For all 

samples, even for sample S-0h, well-defined diffraction peaks ascribed to a crystalline 

phase of hematite (Joint Committee on Powder Diffraction Standards file No. 33-0664, R-

3C space group) are observed. Besides, in the case of samples obtained at aging time equal 

or below to 4 hours, additional broad peaks appear in the XRD patterns, whose relative 

intensities gradually vanish as tA increases. These facts indicate that the fast nucleation 

process induced immediately the formation of hematite nanoparticles accompanied by the 

precipitation of amorphous or poorly crystallized iron oxide that tend to disappear astA 

increases. On the other hand, the relative intensities of the diffraction peaks of the hematite 

phase evolve as tA is varied. In this manner, the relative intensity of the Bragg peak 

corresponding to the (104) planes increases as tA increases. This observation suggests that 

the -Fe2O3 nanocrystals predominantly exposed {104} crystal faces, feature that was more 

marked as the aging time was increased. 

 

The crystal dimensions estimated from the Scherrer equation were also dependent 

on the aging time.Fig. 2 displays the mean coherence lengths perpendicular to different 



hematite (hkl) planes, obtained using the equation (1). These data shownon-monotonous 

dependences that can be different in function of the studied (hkl) diffraction peaks. 

 

Fig. 3 shows representative TEM images of samples obtained at different tA. For the 

non-aged sample (i.e. S-0h), very fine nanoparticles or nuclei with average sizes of around 

5 nm are formed, howeversome particles of this sample,in a minority proportion, displayed 

tens of nm (Fig. 3a). In agreement with the above mentioned XRD characterizations and the 

results reported by Wang et al.,
31

 the finest nanoparticles could be amorphous or poorly 

crystallized iron oxide,and the particles of tens of nm in size could be associated to the 

early formation of hematite nanocrystals. As the aging time was increased, the presence of 

biggest particles significantly increased, and they acquiredrhombohedra-like morphologies 

(Fig. 3b-d), whereas the presence of the finest nanoparticles decreased until they practically 

disappeared at aging time above 8 hours, indicating that a crystal growth by Ostwald 

ripening occurs.
37,38

 According to these remarks, the average particle size increased as tA 

was increased up to 24 hours, and the mean particle size remainedalmost constant for 

longer aging time (Fig. 4b, c and d). 

 

Figures 5a and 5c depict typical HRTEM images of -Fe2O3 nanocrystals with 

rhombohedra shapes obtained at different aging time (4 and 24 hours, respectively). The 

indexation of the corresponding FFT images of these HRTEM images (see for example Fig. 

5b) disclose that both nanocrystals are viewed along the [-441] direction with four side 

facets that correspond to {104} crystal planes. 



 

These features are similar than those reported by Rodriguez et al.
32

 for -Fe2O3 

nanocrystals with a rhombohedra shape obtainedthrough the forced hydrolysis of iron (III) 

chloride solutions but with a slow nucleation process. Therefore, the fast nucleation process 

accelerates the formation of the rhombohedral -Fe2O3nanocrystals but not affect to their 

microstructural properties. Also, we can conclude that the rhombohedral crystals increases 

their size as tA increases from 4h to 24 h, but their exposed faces don´t change. On the other 

hand, it is remarkable that we didn´t found the disk-like and tetrahedral-like hematite 

nanocrystal aggregates reported by Wang et al.
31

 obtained under the fast nucleation process, 

probably because the formation of these supramolecular structures is strongly dependent on 

the solvent evaporation.
31

Interestingly, we observed in Fig. 5a and c that the edges of the 

long diagonal of both rhombohedra nanocrystals appear slightly rounded due to the 

occurrence of small exposed surfaces parallel to the crystal plane{110}. 

 

The fact that the nanocrystals tend to appear as rhombohedra usually oriented along 

the [-441] direction suggests that these fine crystals tend to display a flattened morphology 

with the [-441] direction perpendicular to their flat surface. However, some additional 

particles apparently exhibit other polyhedral shapes.Wang et al. attributed this fact to the 

occurrence of a shape distribution of the particles,
31

 however, the observation of several 

apparent morphologies is probably due to the nanocrystals can fall onto the TEM grid with 

different orientations. In this regards, Rodriguez et al. showed that a unique rhombohedral 

shape for -Fe2O3 nanocrystals with {104} facets could explain the different apparent 



particle shapes obtained through the forced hydrolysis of iron (III) chloride solutions with a 

slow nucleation,
32

 which is consistent with more recent observations carried out by electron 

microscopy tomography.
39

Fig 6a shows a TEM micrograph of sample S-24h where several 

-Fe2O3 nanocrystals are observed with different tilted positions into an open area of the 

lacey carbon film, confirming the model of Rodriguez et al.
32

 Fig. 6b is the HRTEM of one 

of these particles. The indexation of its corresponding FFT pattern (Fig. 6c) indicated that 

this nanocrystal is observed in Figs. 6a and b along the [241] direction.Also, the TEM 

image of Fig. 6a shows that the -Fe2O3nanocrystals usually present pores and fractures, in 

agreement with the formation of -Fe2O3nanocrystals through the aggregation of poorly 

crystallized particles and coalescence proposed by Echigo et al.
39

Fig. 7 is a schematic 

representation of the formation mechanism of the rhombohedral-Fe2O3nanocrystals with 

pores and fractures, consisting of the quick formation of amorphous or poorly crystallized 

nuclei, nuclei aggregation, coalescence, crystallization forming stable faces with pores, and 

finally, growth by Ostwald ripening. 

 

Fig. 8 shows an example of the FTIR characterization of the rhombohedral-Fe2O3 

nanocrystals. Characteristic absorption peaks of hematite
40-42

appear at 470, 527, 576 and 

645 cm
-1

as very small bands in these spectra. We attributed the other peaks to material 

adsorbed on the nanocrystal surface from the reaction media. In fact, the wide and very 

intense peak observed at around 3420 cm
-1

 could be associated to the O-H vibration of 

physically absorbed water in the nanocrystals.
42

 Also, the intense peak at 1606 cm
-1

 could 

be ascribed to the bending vibration of adsorbed water.
43

 The abundance of OH groups and 



physisorbedwater molecules is very usual in hematite nanoparticles prepared by 

hydrothermal and force hydrolysis methods.
44 

 

 Fig. 9 shows the Raman spectrum of sample S-24h. The intense peaks at 221 and 

280 cm
-1

 can be assigned to the A1g and Eg Raman modes of the hematite phase.
40,45

These 

bands appear shifted to lower frequencies relative to the bulk hematite ones (226 and 292 

cm
-1

)
40

due to phonon confinement effects arising from the nanoscopic size of the 

rhombohedral nanocrystals.
46

On the other hand, the weak and broad peaks at 386 and 586 

cm
-1

 could be ascribed to the presence ofthe amorphous or poorly crystallized iron oxide 

nuclei.
31

 Interestingly, an additional wide band is observed at around 1289 cm
-1

. Owens et 

al. observed this band at 1295 cm
-1

 for a bulk hematite sample and shifted down to 1283 

cm
-1

 for nanosized hematite,
46

 and it was associated to the band reported by other authors at 

1320 cm
-1

.
47

This  band has been frequently assigned to a two-magnon scattering arising 

from the antiferromagnetic nature of hematite,
47

 however, several studies have shown that 

this band is actually due to a two-phonon mode,
46,48,49

 falling the two-magnon scattering 

band at around 1525 cm
-1

, which has been observed with Raman-scattering measurements 

carry out at different temperatures, high pressures and with isotopic oxygen substitution.
49

 

 

 The color of the colloidal suspensions of the nanocrystals was gradually changed 

from reddish brown to blood-red as the aging time was increased (see the insert of Fig. 

10).To gain more information about the optical and semiconductor properties of samples, 

they were studied by UV-visible spectroscopy. Bulk stoichiometric hematite is a n-type 



semiconductor whose valence band consists of full 2t2g Fe 3d ligand field orbitals and a 

contribution of the oxygen antibonding 2p orbitals, whereas its conduction band is 

composed of empty Fe
3+

 3d orbitals, being the band gap energy of bulk hematite around 2.2 

eV.
40

 Fig. 10 shows the UV-visible spectra of samples obtained at different aging time. 

Such spectra indicated that all samples show strong absorption of electromagnetic radiation 

in the UV region and to a lesser extent in the violet-blue region, which could be ascribed to 

two kinds of electronic transitions: the absorption in the UV range related to the 

directcharge transition of O
2-

 2pFe
3+

 3d, and the absorption in the violet-blue range 

related to the indirect charge transition 2Fe
3+ 
 Fe

2+
 + Fe

4+
.
18,27

Interestingly, the absorption 

curves tend to experience a shift to higher frequencies (smaller wavelengths) as the aging 

time decreases. This blue shift is associated to the reduction of the nanocrystal size, as it has 

been observed in other semiconductor systems.
50

For the non-aged sample (tA = 0h), the 

absorbance continuously decreased as the wavelength decreased in the wavelength range 

from 300 to 1,000 nm. However, for aged samples at 98º C, the absorbance exhibiteda peak 

and a shoulder, which we named K1 and K2, respectively, and that both experienced a shift 

from 362 and 525 nm to 390 and 540 nmas the aging time was increased from 8 to 56 

hours, respectively. 

 

TheTauc´s plot analysis (see illustrative examples in Fig. 11a and b) indicated that 

the indirect a direct transition band gap energies decreased from 2.43 and 2.79 to 1.91 and 

2.18 eV as tA increased (Fig 10c and d), respectively, being the values of the band gaps at 

the largest aging time very close to values reported for bulk hematite,
27

 and around 25% 

larger than the bulk values at tA =4h. These dependences are attributed to the dependence of 



the dimensions of the nanocrystals on the aging time and the increasing contribution of the 

quantum confinement and surface effects as the crystal size is decreased to few nm. As 

Fondell et al. have recently shown,
51

the quantum confinement effects significantly affects 

to the optical properties of low dimensional hematite with dimensions below 20 nm. On the 

other hand, stoichiometric deviations are expected at the nanocrystal surface due to its 

reduced coordination number, roughness and the presence ofpores, which should have a 

notorious effect on the semiconductor properties when the surface / volume ratio of the 

nanocrystals is enough large.  

 

Conclusions 

Hematite nanosizedcrystals with rhombohedral morphologies have been prepared by forced 

hydrolysis in a fast nucleation process. The formation mechanism of these crystals occurs 

by a fast nucleation of very fine amorphous iron oxide nanoparticles that grow firstly by 

aggregation and coalescence,and then by Ostwald ripening forming hematite nanocrystals 

with a rhombohedral morphology. The resulting rhombohedral nanocrystals are composed 

of four {104} side facets, two {110} faces at the edges of the long diagonal of the 

nanocrystals and two {-441} facets as the top and bottom faces. These crystals have 

vibrational properties with resonant frequencies shifted to lower frequencies relative to the 

bulk hematite onesdue to phonon confinement effects. Also, these nanoscopic crystals 

exhibitstrong absorption of electromagnetic radiation in the UV region and a lesser extent 

in the violet-blue region that experience a shift to higher frequencies as their sizes are 

decreased, exhibitingindirect a direct transition band gap energies that can be up to 25% 

larger than the bulk values due to quantum confinement and surface effects. 
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Fig. 1. XRD patterns of hematite samples obtained at different aging time. 



Fig. 2. Mean coherence lengths perpendicular to (110), (104), (116) and (024) 

crystallographic planes, respectively 

 

 

 

 

 

 

 



 

 

Fig. 3. TEM images of samples a) S-0h, b) S-4h, c) S-28h and d) S-48h. 

 

 

 

 



 

Fig. 4. Particle size distributions of samples a) S-0h,  b) S-4h and c) S-24h. d) Mean size of 

the nanoparticles as a function of the aging time. 

 



 

 

Fig. 5. HRTEM images of rhombohedral-shape hematite nanocrystals of samples a) S-4h 

and c) S-24h. Both crystals are viewed along the direction [-441] and present the same 

crystal facets. b)  Fast Fourier Transform (FFT) pattern corresponding to image a) indexed 

to the [-441] zone axis of the hematite structure.   
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Fig. 6. a) TEM image of sample S-24h where several -Fe2O3 nanocrystals are observed 

with different orientations. b) HRTEM of the nanocrystal highlighted in the panel a) by a 

yellow arrow.White arrows highlight some pores of the nanocrystals. c) FFT pattern 

corresponding to panel b) indexed to the [241] axis zone of the hematite structure. 



 

 

Fig. 7. Schematic representation of the formation mechanism of the rhombohedral hematite 

nanocrystals. 
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Fig. 8. Infrared spectrum of the sample S-24h 

 

 

 

 

 

 

 



 

Fig. 9. Raman spectrum of the sample S-24h. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. UV-visible spectra of samples obtained at different aging time. The spectra of 

samples obtained at tA equal or above 8 h exhibits a peak K1 in the ultraviolet region and a 

shoulder K2 in the visible region. The insert is a photograph of colloids of hematite 

nanocrystals obtained at different aging time. 

 

 



 

Fig. 11. Tauc´s plot analysis for samples a) S-8h and b) S-48h. Panels c) and d) represent 

the dependences of the indirect a direct transition band gap energies obtained from the 

Tauc´s plot analysis on the aging time, respectively.  


