360 research outputs found

    Zinc nitride thin films: Basic properties and applications

    Full text link
    A. Redondo-Cubero, M. GĂłmez-Castaño, C. GarcĂ­a NĂșñez, M. DomĂ­nguez, L. VĂĄzquez, J. L. Pau , "Zinc nitride thin films: basic properties and applications", Oxide-based Materials and Devices VIII, Proc. SPIE 10105, 101051B (24 February 2017); doi: 10.1117/12.2253044. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibitedProceedings of VIII Oxide-based Materials and Devices Conference (San Francisco, California, United States)Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.This research is supported by the MINECO (CTQ2014-53334-C2-2-R) and Comunidad de Madrid (NANOAVANSENS ref. S2013/MIT-3029). ARC acknowledges RamĂłn y Cajal program (under contract number RYC-2015-18047

    iCanCloud: a flexible and scalable cloud infrastructure simulator

    Get PDF
    Simulation techniques have become a powerful tool for deciding the best starting conditions on pay-as-you-go scenarios. This is the case of public cloud infrastructures, where a given number and type of virtual machines (in short VMs) are instantiated during a specified time, being this reflected in the final budget. With this in mind, this paper introduces and validates iCanCloud, a novel simulator of cloud infrastructures with remarkable features such as flexibility, scalability, performance and usability. Furthermore, the iCanCloud simulator has been built on the following design principles: (1) it's targeted to conduct large experiments, as opposed to others simulators from literature; (2) it provides a flexible and fully customizable global hypervisor for integrating any cloud brokering policy; (3) it reproduces the instance types provided by a given cloud infrastructure; and finally, (4) it contains a user-friendly GUI for configuring and launching simulations, that goes from a single VM to large cloud computing systems composed of thousands of machines.This research was partially supported by the following projects: Spanish MEC project TESIS (TIN2009-14312-C02-01), and Spanish Ministry of Science and Innovation under the grant TIN2010-16497.Publicad
    • 

    corecore