264 research outputs found

    APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    Full text link
    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2x10^4. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2x10^4. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photo detection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13+-3)%, again at a threshold of 6 mV.Comment: 14 pages, 9 figures, submitted to Journal of Instrumentatio

    APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    Full text link
    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2x10^4. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2x10^4. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photo detection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13+-3)%, again at a threshold of 6 mV.Comment: 14 pages, 9 figures, submitted to Journal of Instrumentatio

    APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    Full text link
    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2x10^4. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2x10^4. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photo detection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13+-3)%, again at a threshold of 6 mV.Comment: 14 pages, 9 figures, submitted to Journal of Instrumentatio

    Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed

    Full text link
    We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of beta = v/c = 0.338 in the storage ring ESR at Darmstadt. A Lambda-type three-level system within the hyperfine structure of the 7Li+ triplet S1-P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler shifted frequencies required for resonance are measured with an accuracy of < 4 ppb using optical-optical double resonance spectroscopy. This allows us to verify the Special Relativity relation between the time dilation factor gamma and the velocity beta to within 2.3 ppb at this velocity. The result, which is singled out by a high boost velocity beta, is also interpreted within Lorentz Invariance violating test theories

    Q value and half-life of double-electron capture in Os-184

    Get PDF
    Os-184 has been excluded as a promising candidate for the search of neutrinoless double-electron capture. High-precision mass measurements with the Penning-trap mass spectrometer TRIGA-TRAP resulted in a marginal resonant enhancement with = -8.89(58) keV excess energy to the 1322.152(22) keV 0+ excited state in W-184. State-of-the-art energy density functional calculations are applied for the evaluation of the nuclear matrix elements to the excited states predicting a strong suppression due to the large deformation of mother and daughter states. The half-life of the transition in Os-184 exceeds T_{1/2} > 1.3 10^{29} years for an effective neutrino mass of 1 eV.Comment: accepted in Phys. Rev.

    Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    Full text link
    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.Comment: 13 pages, 6 figure

    Spins, Electromagnetic Moments, and Isomers of 107-129Cd

    Full text link
    The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell
    • …
    corecore