199 research outputs found
Mixed Map Labeling
Point feature map labeling is a geometric problem, in which a set of input
points must be labeled with a set of disjoint rectangles (the bounding boxes of
the label texts). Typically, labeling models either use internal labels, which
must touch their feature point, or external (boundary) labels, which are placed
on one of the four sides of the input points' bounding box and which are
connected to their feature points by crossing-free leader lines. In this paper
we study polynomial-time algorithms for maximizing the number of internal
labels in a mixed labeling model that combines internal and external labels.
The model requires that all leaders are parallel to a given orientation , whose value influences the geometric properties and hence the
running times of our algorithms.Comment: Full version for the paper accepted at CIAC 201
Experimental Evaluation of Book Drawing Algorithms
A -page book drawing of a graph consists of a linear ordering of
its vertices along a spine and an assignment of each edge to one of the
pages, which are half-planes bounded by the spine. In a book drawing, two edges
cross if and only if they are assigned to the same page and their vertices
alternate along the spine. Crossing minimization in a -page book drawing is
NP-hard, yet book drawings have multiple applications in visualization and
beyond. Therefore several heuristic book drawing algorithms exist, but there is
no broader comparative study on their relative performance. In this paper, we
propose a comprehensive benchmark set of challenging graph classes for book
drawing algorithms and provide an extensive experimental study of the
performance of existing book drawing algorithms.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions
A greedily routable region (GRR) is a closed subset of , in
which each destination point can be reached from each starting point by
choosing the direction with maximum reduction of the distance to the
destination in each point of the path.
Recently, Tan and Kermarrec proposed a geographic routing protocol for dense
wireless sensor networks based on decomposing the network area into a small
number of interior-disjoint GRRs. They showed that minimum decomposition is
NP-hard for polygons with holes.
We consider minimum GRR decomposition for plane straight-line drawings of
graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing
style which has become a popular research topic in graph drawing. We show that
minimum decomposition is still NP-hard for graphs with cycles, but can be
solved optimally for trees in polynomial time. Additionally, we give a
2-approximation for simple polygons, if a given triangulation has to be
respected.Comment: full version of a paper appearing in ISAAC 201
Recognizing Weighted Disk Contact Graphs
Disk contact representations realize graphs by mapping vertices bijectively
to interior-disjoint disks in the plane such that two disks touch each other if
and only if the corresponding vertices are adjacent in the graph. Deciding
whether a vertex-weighted planar graph can be realized such that the disks'
radii coincide with the vertex weights is known to be NP-hard. In this work, we
reduce the gap between hardness and tractability by analyzing the problem for
special graph classes. We show that it remains NP-hard for outerplanar graphs
with unit weights and for stars with arbitrary weights, strengthening the
previous hardness results. On the positive side, we present constructive
linear-time recognition algorithms for caterpillars with unit weights and for
embedded stars with arbitrary weights.Comment: 24 pages, 21 figures, extended version of a paper to appear at the
International Symposium on Graph Drawing and Network Visualization (GD) 201
Drawing Binary Tanglegrams: An Experimental Evaluation
A binary tanglegram is a pair of binary trees whose leaf sets are in
one-to-one correspondence; matching leaves are connected by inter-tree edges.
For applications, for example in phylogenetics or software engineering, it is
required that the individual trees are drawn crossing-free. A natural
optimization problem, denoted tanglegram layout problem, is thus to minimize
the number of crossings between inter-tree edges.
The tanglegram layout problem is NP-hard and is currently considered both in
application domains and theory. In this paper we present an experimental
comparison of a recursive algorithm of Buchin et al., our variant of their
algorithm, the algorithm hierarchy sort of Holten and van Wijk, and an integer
quadratic program that yields optimal solutions.Comment: see
http://www.siam.org/proceedings/alenex/2009/alx09_011_nollenburgm.pd
Optimal 3D Angular Resolution for Low-Degree Graphs
We show that every graph of maximum degree three can be drawn in three
dimensions with at most two bends per edge, and with 120-degree angles between
any two edge segments meeting at a vertex or a bend. We show that every graph
of maximum degree four can be drawn in three dimensions with at most three
bends per edge, and with 109.5-degree angles, i.e., the angular resolution of
the diamond lattice, between any two edge segments meeting at a vertex or bend.Comment: 18 pages, 10 figures. Extended version of paper to appear in Proc.
18th Int. Symp. Graph Drawing, Konstanz, Germany, 201
Computing Hive Plots: A Combinatorial Framework
Hive plots are a graph visualization style placing vertices on a set of
radial axes emanating from a common center and drawing edges as smooth curves
connecting their respective endpoints. In previous work on hive plots,
assignment to an axis and vertex positions on each axis were determined based
on selected vertex attributes and the order of axes was prespecified. Here, we
present a new framework focusing on combinatorial aspects of these drawings to
extend the original hive plot idea and optimize visual properties such as the
total edge length and the number of edge crossings in the resulting hive plots.
Our framework comprises three steps: (1) partition the vertices into multiple
groups, each corresponding to an axis of the hive plot; (2) optimize the cyclic
axis order to bring more strongly connected groups near each other; (3)
optimize the vertex ordering on each axis to minimize edge crossings. Each of
the three steps is related to a well-studied, but NP-complete computational
problem. We combine and adapt suitable algorithmic approaches, implement them
as an instantiation of our framework and show in a case study how it can be
applied in a practical setting. Furthermore, we conduct computational
experiments to gain further insights regarding algorithmic choices of the
framework. The code of the implementation and a prototype web application can
be found on OSF.Comment: Appears in the Proceedings of the 31st International Symposium on
Graph Drawing and Network Visualization (GD 2023
- …