
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 13 (2016), pp. 3–32 doi:10.5311/JOSIS.2016.13.264

RESEARCH ARTICLE

Mixed map labeling∗

Maarten Löffler1, Martin Nöllenburg2, and Frank Staals3

1Department of Information and Computing Sciences, Utrecht University, the Netherlands
2Algorithms and Complexity Group, TU Wien, Vienna, Austria

3MADALGO, Aarhus University, Denmark

Received: October 30, 2015; returned: May 18, 2016; revised: August 23, 2016; accepted: September 14, 2016.

Abstract: Point feature map labeling is a geometric visualization problem, in which a set
of input points must be labeled with a set of disjoint rectangles (the bounding boxes of the
label texts). It is predominantly motivated by label placement in maps but it also has other
visualization applications. Typically, labeling models either use internal labels, which must
touch their feature point, or external (boundary) labels, which are placed outside the input
image and which are connected to their feature points by crossing-free leader lines. In this
paper we study polynomial-time algorithms for maximizing the number of internal labels
in a mixed labeling model that combines internal and external labels. The model requires
that all leaders are parallel to a given orientation θ ∈ [0, 2π), the value of which influences
the geometric properties and hence the running times of our algorithms.

Keywords: algorithms, map labeling, computational geometry, geovisualization

1 Introduction

Annotating features of interest in maps and other images of geographic information with
textual labels or graphical icons is an important task in geovisualization. The traditional
design principles and quality criteria used in cartographic label placement easily generalize
to label placement in arbitrary information graphics and illustrations. In a map, labels are
mostly placed internally, that is, touching their respective feature points. Common carto-
graphic placement guidelines demand that each label is placed in the immediate neighbor-
hood of its feature and that the association between labels and features is unambiguous,
while no two labels may overlap each other [16, 27]. Different styles of label placement

∗A preliminary version of this paper appeared in Proc. 9th International Conference on Algorithms and Com-
plexity (CIAC 2015) [22].

c© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©

4 LÖFFLER, NÖLLENBURG, STAALS

and their merits have been studied extensively in cartography and geographic information
science. However, even when an ideal set of placement rules is agreed upon, it is often
not trivial to compute an optimal placement. In the computational geometry literature,
there has been extensive work investigating the tractability of different labeling styles. It
is known that maximizing the number of non-overlapping labels for a given set of input
points is NP-hard, even for very restricted labeling models [10, 23]. In terms of labeling
algorithms, several approximations, polynomial-time approximation schemes (PTAS), and
exact approaches are known [1, 8, 20, 28], as well as many practically effective heuristics,
see the bibliography of Wolff and Strijk [29]. If, however, feature points lie too dense in the
map or if their labels are relatively large, often only small fractions of the features obtain a
label, even in an optimal solution.

An alternative labeling approach uses external instead of internal labels, which are
sometimes known as callouts. External labels are remotely placed, often outside the image
itself, and connected by leaders to their respective feature points. This is known as bound-
ary labeling [6] in the algorithmic literature. The boundary labeling style is most frequently
used when annotating anatomical drawings [13, 26] and technical illustrations, where dif-
ferent and often small parts are identified using labels and longer descriptive texts out-
side the actual picture. Other popular applications of boundary labeling are annotation
placement in correction mode of word processing software and commenting in document
viewers [18]. But also maps and cartographic visualizations can carry external labels, e.g.,
the Maplex Label Engine in ArcGIS 10.3 offers labels with callouts and leaders.

While the association between points and external labels may be more difficult to see,
the big advantages of boundary labeling are that even dense feature sets can be labeled
and that larger labels can be accommodated on the margins of the illustration. Many effi-
cient boundary labeling algorithms are known. They can be classified by the leader shapes
that are used and by the sides of the picture’s bounding box that are used for placing the
labels [3, 6, 7, 11, 15, 19, 25]. A recent user study evaluates the readability and aesthetic
preference for differently shaped leader types and concludes that, especially for dense fea-
ture sets, straight leaders or leaders with at most one bend (horizontal/vertical or horizon-
tal/diagonal) perform best [2]. Orthogonal leaders with two bends were clearly outper-
formed in most cases.

The combination of internal and external labeling models using internal labels where
possible and external labels where necessary seems natural and has been proposed as an
open problem by Kaufmann [17]; however, only few results are known in such hybrid or
mixed settings. In a mixed labeling, the final image will be an overlay of the original map
or drawing, a collection of internal text labels, and a collection of leaders leading out of
the image towards their external labels. Depending on the application, we may wish to
forbid intersections between some or all of these layers. When no additional intersection
constraints are imposed, the problem reduces to classical internal map labeling. Under
the very natural restriction that leaders cannot intersect internal labels, the internal labels
need to be placed carefully, as not every set of disjoint internal labels creates sufficient gaps
for routing leaders of the prescribed shape from all remaining feature points to the image
boundary. Löffler and Nöllenburg [21] studied a restricted case of hybrid labeling, where
a partition of the feature points into points with internal fixed position labels and points
with external labels to be connected by one-bend orthogonal leaders is given as input. They
presented efficient algorithms and hardness results, depending on three different problem
parameters. Bekos et al. [4] studied a mixed labeling model with fixed-position internal

www.josis.org

http://www.josis.org

MIXED MAP LABELING 5

(a) θ = π (b) θ = 0 (c) θ = π/3

Figure 1: A sample point set with mixed labelings of three different slopes. In (a) five
external labels are necessary, whereas (b) and (c) require only four external labels. The
slope in (c) yields aesthetically pleasing results.

labels and external labels on one or two opposite sides of the bounding box, connected by
two-bend orthogonal leaders. Their goal is to maximize the number of internally labeled
points, while labeling all remaining points externally. Polynomial and quasi-polynomial-
time algorithms, as well as an approximation algorithm and an ILP formulation were pre-
sented.

Contribution In this paper, we extend the known theoretical results on mixed map label-
ing as follows. We present a mixed labeling model, in which each point is assigned either
an axis-aligned fixed-position internal label (e.g., to the top right of the point) or an external
label connected with a leader of slope θ, where θ ∈ [0, 2π) is an input parameter defining the
unique leader direction for all external labels, measured clockwise from the negative x-axis
(see Figure 1). In this model, we present a new dynamic-programming algorithm to maxi-
mize the number of internally labeled points for any given slope θ, including the left- and
right-sided case (θ = 0 or θ = π), which was studied by Bekos et al. [4]. While for the right-
sided case Bekos et al. provided a faster O(n log2 n)-time algorithm, where n is the number
of input points, our algorithm improves upon their pseudo-polynomial O(nlogn+3)-time
algorithm for the left-sided case. We solve this problem in O(n3(log n + δ)) time, where
δ = min{n, 1/dmin} is the inverse of the distance dmin of the closest pair of points in P
and expresses the maximum density of P (Section 2). In the general case it turns out that
the set of slopes can be partitioned into twelve intervals, in each of which the geometric
properties of the possible leader-label intersections are similar for all slopes. Depending on
the particular slope interval, the amount ι(n, δ, θ) of “interference” between sub-problems
varies. This significantly affects the algorithm’s performance and leads to running times
between O(n3 log n) and O(n3(log n + ι(n, δ, θ))) ⊆ O(n7) (Section 3). From a theoretical
point of view, this shows that mixed map labeling can be solved optimally in polynomial
time for any leader slope. From a practical point of view, near-cubic running times up to
O(n7) (depending on the leader slope) seem too slow at first sight. However, in many ap-
plications, e.g., maps on small, mobile devices or thematic maps for newspapers and other
public media, the number of labels to show is moderate, say 10–50. In such a setting, our
algorithms may well prove themselves to be sufficiently fast in practice depending on the
input parameters θ and δ. Moreover, we can use our algorithm to optimize the number of

JOSIS, Number 13 (2016), pp. 3–32

6 LÖFFLER, NÖLLENBURG, STAALS

internal labels over all slopes θ at an increase in running time by a factor of O(n2), as is
shown in Section 4.2.

Problem statement We are given a map (or any other illustration)M, which we model
for simplicity as a convex polygon (this is easy to relax to larger classes of well-behaved
domains), and a set P of n points in M that must be labeled by rectangular labels (the
bounding boxes of the label texts). In addition, we are given a leader slope θ ∈ [0, 2π). For
simplicity we assume that θ is none of the slopes defined by two points in P . We discuss
in Section 4.6 how to remove this restriction. There are two choices for assigning a label
to a point p ∈ P : either we assign an internal label λp onM in a one-position model, or an
external label outside of M that is connected to p with a leader γp. An internal label λp is
a rectangle that is anchored at p by its lower left corner. A leader γp is a line segment of
slope θ insideM; it may bend to the horizontal direction outside ofM in order to connect
to its horizontally aligned label, see Figure 1c. So in this model, the labeling is fixed once
the choice for an internal or external label has been made for each point p ∈ P . For a valid
label assignment we require that (i) the labels do not overlap each other or the leaders, and
that (ii) the leaders themselves do not intersect each other. As we will see in Section 4.4 it
is easy to realize constraint (i) for the external labels. Figure 1 shows valid mixed labelings
for three different slopes.

Given a set of points P ⊆ P , let Λ(P) = {λp | p ∈ P} denote the set of (candidate) labels
corresponding to the points in P and let Γ(P) = {γp | p ∈ P} denote the set of (candidate)
leaders corresponding to the points in P . A labeling of P is a partition of P into sets I and
E , the points in I labeled internally, the points in E labeled externally, such that no two
labels in Λ(I) intersect, no two leaders in Γ(E) intersect, and no label from Λ(I) intersects
a leader from Γ(E).

For ease of presentation we first assume that all labels have the same size, which, with-
out loss of generality, we assume to be 1× 1, but the problem can be solved with the same
algorithms for rectangular labels of any other fixed size and shape. Hence, an internal label
λp is a unit square with its bottom left corner on p. This may be a realistic model in some
settings (e.g., unit-size icons as labels [14]), but generally not all labels have the same size.
We will sketch how to relax this restriction in Section 4.5.

Each leader γp can be split into an inner part (or inner leader), which is a line segment of
slope θ from p to the intersection point with the boundary ofM, and an outer part (or outer
leader) from the boundary ofM to the actual label. In this paper we focus our attention on
the inner leaders as they determine how P is separated into different subinstances. Hence
we can basically think of the leaders as half-lines with slope θ. Again, this assumption is not
realistic for mixed map labeling in practice, where the placement of labels and the routing
of leaders outside of M is an important sub-problem. We explain a simple method of
routing the outer leaders in Section 4.4 and discuss possible consequences and approaches
if the space for external labels is bounded. Studying this external labeling problem in its
entirety is beyond the scope of this paper and gives rise to computational problems of
independent interest.

It is well known that in general not all points in P can be assigned an internal label.
The corresponding label number maximization problem is NP-hard [10, 23], even if each
label has just one candidate position [21]. If, however, all labels have the same position
(e.g., to the top left of the anchor points) and no input point may be covered by any other
label, the one-position case can be solved efficiently by first discarding all labels containing

www.josis.org

http://www.josis.org

MIXED MAP LABELING 7

an anchor point and then applying a simple greedy algorithm on the resulting staircase
patterns [21]. On the other hand, it is also known that any instance can be labeled with
external labels using efficient algorithms [5, 6]. Mixed labelings combine both label types
and sit between the two extremes of purely internal and purely external labeling [4, 21].
Here we are interested in the internal label number maximization problem, which was first
studied for θ ∈ {0, π} by Bekos et al. [4]: Given a map M, a set of points P in M and a
slope θ ∈ [0, 2π), we wish to find a valid mixed labeling that maximizes the number |I| of
internally labeled points.

2 Leaders from the left

We start with the case that θ = 0, i.e., all leaders are horizontal half-lines leading from the
points towards the left ofM. Our approach for maximizing the number of internal labels
is to process the points in P from right to left and to recursively determine the optimal
rightmost unprocessed point p to be assigned an external label. Since no leader may cross
any internal label, the leader γp decomposes the current instance left of p into two (almost)
independent parts, one above γp and one below. As it turns out, a generic subinstance can
be defined by an upper and a lower leader shielding it from the outside and additional
information about at most one point outside the subinstance. The problem is then solved
using dynamic programming.

2.1 Geometric properties

In this section we prove that the problem has a certain geometric structure that we can use
to obtain an efficient algorithm. In particular, we show that if we consider a horizontal
slab defined by two points ` and u as shown in Figure 2, the points in the purple region
are shielded from the labels and leaders of the points outside of the horizontal slab by
the leaders of the points ` and u. In such a configuration, there can be at most one point
r outside the slab, i.e., outside the purple and yellow region, whose label or leader may
interfere with the labeling of the points in the purple region. Such a point r must lie in the
unit square whose top-left corner is ` (the blue region in Figure 2).

Let p = (px, py) be a point in the plane and let Lp = {q | qx < px} and Rp = {q |
qx > px} denote the half-planes containing all points strictly to the left and to the right
of p, respectively. Analogously, we define the half-planes Tp and Bp above and below p,
respectively. Let S(`, u) = T` ∩ Bu denote the horizontal slab defined by points ` and u

(with `y < uy), and let S(`, u) = S(`, u) ∩ L` ∩ Lu denote the set of points in this slab that
lie to the left of both ` and u, see Figure 2(a). We define P`,u as the subset of P in S(`, u)
including ` and u, i.e., P`,u = P ∩ (S(`, u) ∪ {`, u}). With some abuse of notation we will
sometimes also use Lp, Rp, Tp, and Bp to mean the subset of P that lies in the respective
half-plane rather than the entire half-plane.

Recall that δ = min{n, 1/dmin} is a parameter that captures the maximum density of P
as the inverse of the smallest distance dmin between any two points in P . We can use δ to
bound the number of candidate points in a unit square that may be labeled internally.1

1Since all internal labels are unit squares, any unit square can have only one point that is labeled internally. We
use “the number of points that can, or may, be labeled internally” to refer to the number of candidates for such a
point.

JOSIS, Number 13 (2016), pp. 3–32

8 LÖFFLER, NÖLLENBURG, STAALS

u

`

(a)

` z

b

E(`)

(b)

Figure 2: (a) The slab S(`, u) in yellow, the region S(`, u) and its points from P in purple,
and the region E(`) in blue. (b) An enlarged view of the region E(`).

Lemma 1. At most O(δ) points in any unit square have a label λ that does not contain another
point in P .

Proof. LetE be a unit square and let EP = E∩P be the input points inE. Since the label λp
of every point p ∈ EP is a unit square anchored by its lower left corner at p, no other point
q ∈ P may lie to the top-right of p—otherwise p must be labeled externally. Hence any
set of points in EP whose labels do not contain another point of P must form a sequence
p(1), p(2), . . . , p(k) such that p(i)x < p

(j)
x and p

(i)
y > p

(j)
y for any i < j. Since the minimum

distance of any two points is dmin we immediately obtain that EP contains at most O(δ)
points whose label does not contain another point in P .

Next, we characterize which leaders or labels outside of S(`, u) can interfere with a
potential labeling of P`,u assuming that ` and u are labeled externally.

Lemma 2. Let `, u ∈ P , let (I ′, E ′), with `, u ∈ E ′ be a labeling of P`,u. There is no point in
Tu ∪B` whose leader intersects a label from Λ(I ′) and there is no point in Tu whose label intersects
a label from Λ(I ′).

Proof. In any labeling of P`,u there are no intersections between labels and leaders. In par-
ticular, no label λp for p ∈ I ′ intersects γ` or γu. It follows that all labels for I ′ lie inside the
slab S(`, u). By definition, all leaders for E ′ also lie inside S(`, u). Since leaders of points
in Tu ∪ B` do not intersect S(`, u), no such leader can intersect a label from I ′. Moreover,
all labels are anchored by their bottom left corner, and hence all labels of points in Tu lie
above u and do not intersect S(`, u). Thus, no label for a point in Tu can intersect a label in
Λ(I ′).

It is not true, however, that labels for points in B` cannot intersect labels for P`,u. Still,
the influence of B` is very limited as the next lemma shows. Let E(`) denote the open unit
square with top-left corner `, i.e., E(`) = R` ∩ B` ∩ Lz ∩ Tb, where z = (`x + 1, `y) and
b = (`x, `y − 1). See Figure 2(b).

Lemma 3. Let `, u ∈ P , let (I ′, E ′), with `, u ∈ E ′ be a labeling of P`,u, and let (I ′′, E ′′) denote a
labeling of P ∩ B` ∪ {`} with ` ∈ E ′′. There is at most one point p ∈ I ′′ whose label may intersect
a label of I ′, and p ∈ E(`).

Proof. Since ` ∈ E ′ ∩ E ′′ we know that no label in Λ(I ′) or Λ(I ′′) intersects γ`. Thus γ`
serves as a separation line between the labels Λ(I ′) and Λ(I ′′). Let P ′′ ⊆ I ′′ denote the set

www.josis.org

http://www.josis.org

MIXED MAP LABELING 9

of points whose labels intersect a label of I ′, and let Λ(P ′′) denote the corresponding set of
labels. We first argue that P ′′ ⊆ E(`). Then we argue that P ′′ can contain at most one point.

The labels in Λ(P ′′) do not intersect γ`, hence they lie strictly right of `. Thus, P ′′ ⊆ R`.
All points in I ′ lie to the left of `, and their labels have width one. All labels in Λ(P ′′)
intersect such a label, thus all points in P ′′ must lie in Lz , where z = (`x + 1, `y). All
labels in Λ(P ′′) intersect a label from a point in I ′. Thus, all labels in Λ(P ′′) intersect the
horizontal line containing γ`. Since all labels have height one, it follows that all points in
P ′′ lie in Tb, where b = (`x, `y − 1). By definition the points in P ′′ lie in B`. So we have
P ′′ ⊆ R` ∩ Lz ∩ Tb ∩B` = E(`).

The labels in Λ(P ′′) are pairwise disjoint and all intersect the top side s of E(`). Since
the length of s is smaller than one, each label in Λ(P ′′) has width exactly one, and all labels
lie in R` it follows that there can be at most one label in Λ(P ′′). Thus, there is also at most
one point in P ′′.

From Lemma 2 and Lemma 3 it follows that if ` and u are labeled externally, there is at
most one point r below ` that can influence the labeling of the points in S(`, u).

2.2 Computing an optimal labeling

Using the result from the previous section, we now show that the rightmost point that
is labeled externally decomposes the problem into two almost independent smaller sub-
problems. We can use this to compute an optimal labeling efficiently. Consider again a
horizontal slab defined by points ` and u, as shown in Figure 3, and assume that point r
in the blue region is labeled internally. The key idea is then that if we guess the rightmost
point p from the slab labeled internally, then we can compute an optimal solution for the
points in the slab by combining optimal solutions for two smaller sub-problems. Namely,
the sub-problem defined by `, p, and r (the blue points from Figure 3(b) in the slab defined
by ` and p), and the sub-problem defined by p and u and an appropriate point r′ (the orange
points from Figure 3(b) in the slab defined by p and u). This means that we can express the
number of points that can be labeled internally as a recursive function Φ, parameterized by
three points: `, u, and r.

We compute the values Φ(`, u, r) by dynamic programming. When we combine the
solutions Φ(`, p, r) and Φ(p, u, r′) of smaller sub-problems into a solution for the larger
sub-problem Φ(`, u, r) (i.e., a solution for our slab as defined above) we have to test if all
labels of points right of p are free of intersections. We show that we can precompute this
information using a sweepline algorithm.

We define Φ(`, u, r), with `, u ∈ P , and r ∈ E(`) ∪ {⊥} as the maximum number of
points in S(`, u) that can be labeled internally, given that

(i) the points ` and u are labeled externally,
(ii) all remaining points in S(`, u) \ S(`, u) have been labeled internally, and

(iii) point r is labeled internally. If r = ⊥ then no point in E(`) is labeled internally.

See Figure 3(a) for an illustration. Given points `, r, and p ∈ T` we define %(p, `, r)
to be the topmost point in E(p) ∩ (T` ∪ {r}) if such a point exists. Otherwise we define
%(p, `, r) = ⊥. See Figure 3(c).

JOSIS, Number 13 (2016), pp. 3–32

10 LÖFFLER, NÖLLENBURG, STAALS

u

`
r

(a)

u

`
p

r

(b)

r

r′

`

p

(c)

Figure 3: (a) Φ(`, u, r) expresses the maximum number of points in S(`, u) (white marks
with purple outline), that can be labeled internally in the depicted situation. (b) The right-
most point p that is labeled with an external label decomposes the problem into two sub-
problems (the orange and blue points). (c) Point r′ = %(p, `, r) (blue) is the topmost point
from T` ∪ {r} that lies in the region E(p) (the orange unit square).

Lemma 4. For any `, u ∈ P , and r ∈ E(`) ∪ {⊥}, we have that Φ(`, u, r) = |S(`, u)|, or
Φ(`, u, r) = |Rp ∩S(`, u)|+ Φ(`, p, r) + Φ(p, u, r′), where p is the rightmost point in S(`, u) with
an external label and r′ = %(p, `, r).

Proof. Let (I∗, E∗) be an optimal labeling of S(`, u) that satisfies the constraints (i)–(iii) on
Φ(`, u, r), i.e., Φ(`, u, r) = |I∗|. In case E∗ = ∅, we have Φ(`, u, r) = |S(`, u)| and the lemma
trivially holds. Otherwise, there must be a rightmost point p ∈ E∗ with an external label.
Consider the partition of I∗ at point p into the lower left part B∗ = Bp ∩Lp ∩I∗, the upper
left part T ∗ = Tp ∩ Lp ∩ I∗, and the right part R∗ = Rp ∩ I∗, see Figure 3b. We show that
|R∗| = |Rp ∩ S(`, u)|, |B∗| = Φ(`, p, r), and |T ∗| = Φ(p, u, r′), which proves the lemma.

Since p is the rightmost point with an external label it follows that all points in S(`, u)
right of p are labeled internally. Hence, R∗ = Rp ∩ S(`, u).

Next, we observe that LB = (B∗, S(`, p) \B∗) as a sub-labeling of (I∗, E∗) forms a valid
labeling of S(`, p), so by Lemma 3 there is at most one point r̂ below ` that can influence
the labeling of S(`, p). This point r̂, if it exists, lies in E(`). By constraint (iii) point r lies in
E(`) or r = ⊥ and no point in E(`) is labeled internally, and thus r can be the only point in
E(`) labeled internally, i.e., r̂ = r. So, we have that (i) ` and p are labeled externally, (ii) all
points in S(`, p)\S(`, p) are labeled internally, and (iii) point r is the only internally labeled
point in E(`). Thus the definition of Φ applies and we obtain |B∗| ≤ Φ(`, p, r).

Lemmas 2 and 3 together imply that any labeling of S(`, p) is independent from any
labeling of S(p, u). Thus, it follows that LB is an optimal labeling of S(`, p) (given the
constraints), since otherwise (I∗, E∗) could also be improved. Thus |B∗| ≥ Φ(`, p, r) and
we obtain |B∗| = Φ(`, p, r).

Finally, we consider the upper left part T ∗. By Lemma 3 there is at most one point r′ in
Bp with an internal label that can influence the labeling of S(p, u) and we have r′ ∈ E(p).
We need to show that r′ = %(p, `, r). Then the rest of the argument is analogous to the
argument for B∗.

We claim that r′ is the topmost point in E(p) ∩ (T` ∪ {r}). Assume that r′ 6∈ T`, which
means r′ ∈ B`. We know that γ` does not intersect λr′ and hence r′ ∈ R`. This means
that r′ ∈ E(p) ∩ B` ∩ R` =: X and since p lies to the top-left of ` we have X ⊆ E(`). By
definition r is the only point with an internal label in E(`) and hence r′ = r. So if r′ 6= r
we have r′ ∈ E(p) ∩ T`. Now assume that r′ 6= %(p, `, r). Then there is another point
q ∈ E(p) ∩ T` above r′. This point q must be labeled externally since no two points in

www.josis.org

http://www.josis.org

MIXED MAP LABELING 11

E(p) can be labeled internally. This is a contradiction since by definition p is the rightmost
externally labeled point in S(`, u) and by constraint (ii) all points in S(`, u) \ S(`, u) are
labeled internally. So indeed r′ = %(p, `, r) and the same arguments as for B∗ can be used
to obtain |T ∗| = Φ(p, u, r′).

Let `, u ∈ P , and p ∈ S(`, u). We observe that |S(`, p)| and |S(p, u)| are strictly smaller
than |S(`, u)|. Thus, Lemma 4 gives us a proper recursive definition for Φ:

Φ(`, u, r) = max
{

Ψ(S(`, u)),

max
p∈S(`,u)

{Ψ(Rp ∩ S(`, u)) + Φ(`, p, r) + Φ(p, u, %(p, `, r))}
}
,

where

Ψ(P) =

|P |
if all labels in Λ(P ∪{r}∪(S(`, u)\S(`, u))) are pairwise disjoint,
and their intersection with γ` and γu is empty,

−∞ otherwise.

We can now express the maximum number of points in P that can be labeled internally
using Φ. We add two dummy points to P that we assume are labeled externally: a point
p∞ that lies sufficiently far above and to the right of all points in P , and a point p−∞ below
and to the right of all points in P . The maximum number of points labeled internally is
then Φ(p−∞, p∞,⊥).

Computing Φ(`, u, r). We use dynamic programming to compute Φ(`, u, r) for all `, u ∈
P ∪ {p∞, p−∞} with `y < uy and r ∈ E(`) ∪ {⊥}. By finding the maximum in a set of size
O(n), each value Φ(`, u, r) can be computed in O(n) time, given that the values Φ(`′, u′, r′)
for all sub-problems have already been computed and stored in a table and the relevant
values for the functions % and Ψ have been precomputed. There are O(n) choices for each
of ` and u; further there are O(δ) choices for the point r given ` since r is labeled internally
and we know from Lemma 1 that there are at most O(δ) points in E(`) as candidates for
an internal label. We assume the O(δ) candidate points in E(`) are stored; note that we can
easily precompute these sets for all points ` in O(n2) time. This results in an O(n3δ) time
and O(n2δ) space dynamic-programming algorithm. We show next that the preprocessing
of % and Ψ can be done in O(n3 log n) time.

Computing % and Ψ. To compute Φ(`, u, r) we actually have to compute %(p, `, r) and
Ψ′(p, r) := Ψ(Rp ∩ S(`, u)) for all points p ∈ S(`, u). We can preprocess all points in P in
O(n log n) time, such that we can compute each %(p, `, r) in O(1) time as follows. First, we
compute and store for each point p ∈ P the topmost point qp ∈ P in E(p). This requires n
standard priority range queries that take O(n log n) time in total using priority range trees
with fractional cascading [9, Chapter 5]. To compute %(p, `, r) we then check if qp lies above
`. If it does, we have %(p, `, r) = qp. Otherwise, the only candidate point for %(p, `, r) is r
and we can check in O(1) time if r lies in E(p). This takes O(1) time for each triple (p, `, r)
and O(n2δ) time in total.

Next, we fix ` and u, and compute a representation of Ψ′ in O(n log n) time, such that
for each p ∈ S(`, u) and r ∈ E(`) ∪ {⊥}we can obtain Ψ′(p, r) in constant time.

We start by computing the values Ψ′(p,⊥), for all p. We sweep a vertical line from right
to left. That is, we sort all points in S(`, u) by decreasing x-coordinate, and process the

JOSIS, Number 13 (2016), pp. 3–32

12 LÖFFLER, NÖLLENBURG, STAALS

points in that order. The status structure of the sweep line contains the number of points
N in S(`, u) to the right of the sweep line, and a (semi-)dynamic data structure T , which
stores the labels from the points to the right of the sweep line, and can report all labels
intersected by an (axis-parallel) rectangular query window. All labels are unit squares, so
λr intersects a label λq if and only if λr contains a corner point of λq . Furthermore, we
only ever insert new labels (points) into T , thus it suffices if T supports only insert and
query operations. It follows that we can implement T using a semi-dynamic range tree
using dynamic fractional cascading [24]. In this data structure insertions and queries take
O(log n) time.

When we encounter a new point p, p 6∈ {`, u}we test if the label of p intersects any of the
labels encountered so far. We can test this using a range query in the tree T . If p ∈ S(`, u)
we also explicitly test if λp intersects γ` or γu. If there are no points in the query range
λp, and λp does not intersect γ` or γu we report Ψ′(p,⊥) = N , increment N (if applicable),
and insert the corner points of λp into T . If the query range λp is not empty, it follows that
Ψ′(p′,⊥) = −∞, for p′ = p as well as for any point to the left of p. Hence, we report that and
stop the sweep. Our algorithm runs in O(n log n) time: sorting all points takes O(n log n)
time, and handling each of the O(n) events takes O(log n) time.

Now consider a point r ∈ E(`). We observe that for all points p right of r, we have that
Ψ′(p, r) = Ψ′(p,⊥) = 0 since r is right of all points in S(`, u). Consider the points left of r
ordered by decreasing x-coordinate. There are two options, depending on whether or not
λr intersects the label λp of the current point p. If λr intersects λp, we have Ψ′(p, r) = −∞
as well as Ψ′(p′, r) = −∞ for all points p′ left of p. If λr does not intersect λp we still have
Ψ′(p, r) = Ψ′(p,⊥). We can test if λr intersects any other label using a range priority query
with λr in (the final version of) the range tree T . We need O(δ) such queries, which take
O(log n) time each. This gives a total running time of O(n log n). We then conclude:

Lemma 5. Given points `, u ∈ P , we can compute Ψ′(p, r) for all points p ∈ S(`, u) and all
r ∈ E(`) in O(n log n) time.

The above algorithm can also be used when the leaders have a slope θ 6= 0. However,
the data structure T that we use is fairly complicated. In this specific case where θ = 0, we
can also use a much easier data structure, and still get a total running time of O(n log n).
Instead of using the semi-dynamic range tree as status structure, we use a simple balanced
binary search tree that stores (the end-points of) a set of vertical forbidden intervals. When
we encounter a new point p, we check if py lies in a forbidden interval. If this is the case
then λp intersects another label. Otherwise we can label p internally. This set of forbidden
intervals is easily maintained in O(log n) time.

We use this algorithm for every pair (`, u). Hence, after a total ofO(n3 log n) preprocess-
ing time, we can answer Ψ′(p, r) queries for any p and r in constant time. This yields the fol-
lowing result, which improves the previously best known pseudo-polynomial O(nlogn+3)-
time algorithm of Bekos et al. [4] for the left-sided case θ = 0.

Theorem 6. Given a set P of n points, we can compute a labeling of P that maximizes the number
of internal labels for θ = 0 inO(n3 log n+n3δ) time andO(n2δ) space, where δ = min{n, 1/dmin}
for the minimum distance dmin in P .

www.josis.org

http://www.josis.org

MIXED MAP LABELING 13

`

a

b

q

S(`, u)
p

(a)

u

S(`, u)

(b)

E(`)

F (u)

Figure 4: (a) There may be more than one point “below” ` with an internal label if the
leaders arrive from the bottom left. (b) For other directions there is also a region F (u)
“above” the sub-problem that can influence the labeling of S(`, u).

3 Other leader directions

For other leader slopes θ 6= 0 we use a similar approach as before. We consider a sub-
problem S(`, u) defined by two externally labeled points ` and u. We again find the “right-
most” point in the slab labeled externally. This gives us two sub-problems, which we solve
recursively using dynamic programming. However, there are three complications:

• The region E(`) containing the points “below” the slab S(`, u) that can influence the
labeling of S(`, u) is no longer a unit square. Depending on the orientation, it can
contain more than one point with an internal label. See Figure 4(a).

• In addition to the region E(`), which contains points that can interfere with a sub-
problem from below, we now also need to consider a second region, which we call
F (u), containing points whose labels can interfere with a sub-problem from above.
See Figure 4(b).

• The labels of points in S(`, u) are no longer fully contained in the slab S(`, u). Hence,
we have to check that they do not intersect with leaders of points outside S(`, u). See
Figure 4(b).

We start by explicitly finding the points in P whose internal labels contain other points.
We are forced to label these points externally. It is easy to find those points in O(n2) time
in total. Let PX denote this set of points. Additionally, we spend O(n2) time to mark each
point if its label intersects Γ(PX). Hence, for each point we can determine in constant time
if it intersects Γ(PX). For ease of notation we will write P to mean the set P \ PX in the
remainder of this section.

Let θ be the given orientation for the leaders. Consider conceptually rotating the coor-
dinate system such that orientation θ corresponds to the negative x-axis as in the previous
section, and let B̃p, T̃p, L̃p, and R̃p denote the points in P in the bottom, top, left, and right

JOSIS, Number 13 (2016), pp. 3–32

14 LÖFFLER, NÖLLENBURG, STAALS

half-planes bounded by p with respect to this coordinate system. Analogously, we define
S(`, u) = T̃` ∩ B̃u, and S(`, u) = S(`, u) ∩ L̃` ∩ L̃u.

Our goal is again to bound the number of different labelings of the points in B̃` and
T̃u that can influence the labeling of S(`, u). We will show that whether a labeling of B̃`
influences the labeling of S(`, u) depends only on a small subset of the points in B̃`. We
refer to a labeling of B̃` restricted to those points as a configuration of B̃`. The same holds
for the points in T̃u.

3.1 Bounding the number of configurations
Before we solve the problem for arbitrary orientations, we first investigate what structural
changes we encounter as we rotate through the full circle of possible orientations. Since we
assume that labels are always placed to the top right of the points and are square shaped,
it follows that the behavior of the problem is symmetric in leader directions to the top left
and directions to the bottom right of the main diagonal x = y. (Remember that the square
labels are not a restriction; see Section 4.5.) Hence, the problem for leaders leading down is
symmetric to the problem for leaders leading to the left, and can be solved using the same
algorithm as described in the previous section.

As we rotate the leader direction, we encounter structural changes whenever the leader
angle is a multiple of 45◦. This is illustrated in the “wheel of direction” in Lemma 7 and in
Figure 5. Specifically, we now define two regions E and F analogous to E in the previous
section; these regions contain all points whose placement influences the solution of a sub-
problem. The number of points that can be labeled internally inE and F directly influences
the running time, since we need to try all possibilities. Figure 5 illustrates the shape of E
(the shape of F is symmetric by reflection in the line x = y, see Figure 7).

An additional complication is that the labels of points in S(`, u) are no longer fully
contained in the slab defined by ` and u. This means that they could potentially intersect
with leaders of points outside the slab, whose state we do not yet know when solving the
sub-problem. We prove that the number of ways the solution can influence the situation
outside the slab in this way is only linear.

We start by bounding the number of configurations of B̃`. Let E(`) denote the bottom
influence region of `. That is, the points in B̃` “below” the slab S(`, u) whose labels can in-
tersect a label of a point in S(`, u). Figure 5 shows the regions E(`) for various orientations
of the leaders.

Similarly, we can define a region E′(`) ⊂ B̃` such that the leaders of points in E′(`) can
intersect a label of a point in S(`, u).

Lemma 7. For a sub-problem S(`, u) the size of the bottom influence regionE(`) is at most 1×e(θ)
or e(θ)× 1, where

e(θ) ≤

1 if θ = 0

2 if θ ∈ (0, π/4)

1 if θ ∈ [π/4, π/2)

0 if θ = π/2

1 if θ ∈ (π/2, 3π/4)

e(θ) ≤

0 if θ ∈ [3π/4, 5π/4]

1 if θ ∈ (5π/4, 3π/2)

0 if θ = 3π/2

3 if θ ∈ (3π/2, 7π/4)

2 if θ ∈ [7π/4, 2π).

θ
1

2

2

3 0 1

0

0

0

101
1 0

02

www.josis.org

http://www.josis.org

MIXED MAP LABELING 15

`

θ = 0
1× 1

`

1× 2
θ ∈ (0, π/4)

`′ r′

r

p

`

1× 1
θ ∈ [π/4, π/2)

`′

`

θ = π/2
–

`′

1
`

1× 1
θ ∈ (π/2, 3π/4)

`′

1

1
`

–
θ ∈ [3π/4, π)

`

θ = π
–

`

–
θ ∈ (π, 5π/4]

`

1× 1
θ ∈ (5π/4, 3π/2)

`′

`

θ = 3π/2
–

`

3× 1
θ ∈ (3π/2, 7π/4)

`′

r
p

`

2× 1
θ ∈ [7π/4, 2π)

`′

Figure 5: The region E(`) (blue) with respect to sub-problem S(`, u) (purple), depending
on the orientation θ of the leaders. For each orientation we give an upper bound on the size
of E(`).

JOSIS, Number 13 (2016), pp. 3–32

16 LÖFFLER, NÖLLENBURG, STAALS

Proof. We prove this by case distinction on θ. (See also Figure 5)
case θ = 0. See Lemma 3.
case θ ∈ (0, π/4). All labels in Λ(S(`, u)) lie in T` and in L̃r, where r = (`x+1, `y). It follows

that E(`) ⊆ T`′ ∩ L̃r′ , where `′ = (`x, `y − 1) and r′ = (rx, ry − 1). Furthermore, it is easy
to see that E(`) ⊂ R`, and that E(`) ⊆ B̃`. Hence, E(`) ⊂ T`′ ∩R` ∩ L̃r′ ∩ B̃`.
Since the leaders are sloped downwards it follows that the height of E(`) is at most one.
The maximum width of E(`) is realized by ` and the intersection point p of the lines
bounding B̃` and L̃r′ . Using that θ ∈ (0, π/4) basic trigonometry shows that the width is
at most two.

case θ ∈ [π/4, π/2). Similar to the previous case. However, now the width is determined
by the intersection between T`′ and B̃`. From basic trigonometry it then follows that the
width is at most one.

case θ = π/2. For labels from E(`) to intersect Λ(S(`, u)) we need E(`) ⊆ T`′ , where `′ =
(`x, `y − 1). However, to avoid intersecting γ` we need E(`) ⊆ B`′ . It follows that
E(`) = ∅.

case θ ∈ (π/2, 3π/4). Using similar arguments as before it follows that E(`) ⊂ B`′ ∩ L̃`′ ∩
B̃` ∩ L` ∩R`′ , where `′ = (`x − 1, `y − 1). Since E(`) ⊂ L` ∩R`′ the width is at most one.
Basic trigonometry again shows that the height is at most one.

case θ ∈ [3π/4, 5π/4]. For the sub-case θ ∈ [3π/4, π) the lines bounding L̃` and R`′ , with
`′ = (`x − 1, `y − 1) intersect below the line containing γ`. We then obtain E(`) ⊂ R`′ ∩
B`′ ∩ B̃` = ∅. In the remaining sub-case θ ∈ [π, 5π/4] the regions Λ(S(`, u)) and Λ(B̃`)
are disjoint. It follows that E(`) is empty.

case θ ∈ (5π/4, 3π/2). Point ` is now the point with the maximum y-coordinate. It then
follows that all labels of S(`, u) lie in B`′ , where `′ = (`x, `y + 1). Hence, we also get
E(`) ⊂ B`′ . The labels of S(`, u) do not intersect γ`, hence they are contained in L` ∪ T̃`.
We then have E(`) ⊂ B̃` ∩ (L` ∪ T̃`) = B̃` ∩L`. Since θ ∈ (5π/4, 3π/2) it now follows that
the height and width are both at most one.

case θ = 3π/2. All labels from S(`, u) lie in L`, all labels from B̃` = R` lie in R`. Hence,
E(`) = ∅.

case θ ∈ (3π/2, 7π/4). It is again easy to show thatE(`) ⊂ R`∩Lr, where r = (`x+1, `y+1),
and thus has width (at most) one. All labels from points in S(`, u) have width and height
one, and are thus contained in L̃r. Furthermore, they do not intersect γ`, from which
we obtain that they are contained in T̃` ∪ T`. From the former we get that E(`) ⊂ L̃r.
From the latter we get that E(`) ⊂ T̃`′ ∪ T`′ , where `′ = (`x, `y − 1). Hence, we obtain
E(`) ⊂ R` ∩ Lr ∩ L̃r ∩ (T̃`′ ∪ T`′) ∩ B̃`.
Since θ ∈ (3π/2, 7π/4) the height of E(`) is determined by `′ and the intersection point p
between B̃` and L̃r. Trigonometry now shows that the height is at most three.

case θ ∈ [7π/4, 2π) Similar to the previous case we get a width of at most one. The height is
now determined by `′ and the intersection of B̃` and Rr. Since θ ∈ [7π/4, 2π) the height
is at most two.

Corollary 8. There can be at most e(θ) points in E(`) labeled internally such that their labels are
disjoint.

Next, we turn our attention to the points in E′(`) whose leader can intersect a label
of a point in S(`, u). A leader of a point in B̃`, and thus in E′(`), can intersect a label
of S(`, u) only if the labels intersect B̃`. This happens only if θ ∈ (5π/4, 3π/2) or θ ∈

www.josis.org

http://www.josis.org

MIXED MAP LABELING 17

` zS(`, u)

p

qR

qL
`′

p

`

z

S(`, u)

(a) (b)

Figure 6: The region E′(`) (in orange) for the cases θ ∈ (5π/4, 3π/2) (a) and θ ∈ (3π/2, 2π)
(b). In both cases the leader γp of a point p ∈ E′′(`) intersects the line segment `z and thus
subdivides E(`) into a left region L and a right region R.

(3π/2, 2π), see Figure 5. In the former case we thus have E′(`) = B̃` ∩ T̃`′ ∩ L`, where
`′ = (`x, `y + 1− tan(θ− 5π/4)), and in the latter case we have E′(`) = B̃` ∩ T̃z ∩ Tz , where
z = (`x + 1, `y), see Figure 6.

We now note that if we label the set Q ⊆ E(`) internally, then all other points in E(`)
are labeled externally. Hence, if the leaders of the remaining points (e.g., those in E(`) \
Q) intersect with labels of points in S(`, u), this is already captured by the configuration
involvingQ. Therefore, the points inE(`)\Q themselves do not define new configurations.
Similarly, the points that we were forced to label externally, the set PX , do not define any
new configurations.

The points in E′(`) that lie outside of E(`) can still be labeled both internally or exter-
nally. Let E′′(`) = E′(`) \E(`) denote the region containing these points. We now observe:

Lemma 9. Let Q be the set of points in E(`) labeled internally, and let p ∈ E′′(`) be labeled
externally. For all points q ∈ Q we have: λq intersects the leader γp, or if there is a label λa,
a ∈ S(`, u), that intersects λq , then it also intersects the leader γp.

Proof. It is easy to see that any leader γp intersects the line segment `z, with z = (`x, `y + 1)
if θ ∈ (5π/4, 3π/2), and z = (`x + 1, `y) if θ ∈ (3π/2, 2π), see Figure 6. In both cases γp
subdivides E(`) into a left region L and a right region R. At any height (y-coordinate), this
left region L has width at most one. Hence, if there is a point q ∈ L labeled internally, then
its label intersects γp. Any point q ∈ R is separated from S(`, u) by γp. So, if there is a label
a ∈ S(`, u) that intersects λq , then it also intersects γp.

Observation 10. Let p ∈ P ∩ E′′(`) be the point closest to the slab S(`, u), and let q be any point
in P ∩E′′(`). If there is a point a ∈ S(`, u) whose label λa intersects γq , then λa also intersects γp.

Observation 10 gives us that there is only one relevant point in E′′(`), namely the point
p closest to S(`, u). Furthermore, from Lemma 9 it follows that if p exists, then there are no
relevant points in E(`) labeled internally. Hence, p by itself determines a configuration. We
can then define the universe U`E of possible configurations of B̃` as follows:

U`E = {(I, ∅) | I ⊆ E(`) and all labels in Λ(I) are pairwise disjoint} ∪
{(∅, {p}) | p ∈ E′′(`)}

JOSIS, Number 13 (2016), pp. 3–32

18 LÖFFLER, NÖLLENBURG, STAALS

(a)

u

S(`, u)

(b)

F (u)

`

E(`)

u

S(`, u)

F (u)
`

E(`)

Figure 7: Because internal labels are square-shaped and to the top right of points, the prob-
lem is symmetric by reflection in the line x = y. The roles of u and ` and E and F are
swapped.

Let e′(θ) = 1 if there can a point in E′′(`) labeled externally, and e′(θ) = 0 otherwise
(this includes the case in which E′(`) = ∅). We then have that e′(θ) ≤ 1 if θ ∈ (5π/4, 3π/2)∪
(3π/2, 2π) and e′(θ) = 0 otherwise. Using that the labels of points in E(`) do not contain
any other points, together with Lemma 1 we then obtain:

Lemma 11. The number of configurations of B̃` is at most O(|U`E |) = O(δe(θ) + ne
′(θ)).

Bounding the number of configurations of T̃u Analogously to the bottom influence re-
gion E(`) in B̃` we define a top influence region F (u) containing the points from T̃u whose
label can intersect a label of S(`, u), and a region F ′(u) containing the points whose leader
can intersect a label of the points in S(`, u). Figure 4 illustrates this. We observe that F (u)
and F ′(u) are symmetric to E(`) and E′(`) by mirroring in a line with slope 1, see Figure 7.
We thus get similar results for F and F ′ as those stated in Lemmas, Corollaries, and Obser-
vations 7–10. So, similarly we define the universe of configurations UuF of labelings of T̃`.
We can then summarize our results in the following lemma:

Lemma 12. The number of configurations of T̃u is at most O(|UuF |) = O(δf(θ) + nf
′(θ)), where

f(θ) ≤

0 if θ = 0

1 if θ ∈ (0, π/4)

0 if θ ∈ [π/4, 3π/4]

1 if θ ∈ (3π/4, π)

0 if θ = π

f(θ) ≤

1 if θ ∈ (π, 5π/4]

2 if θ ∈ (5π/4, 3π/2)

1 if θ = 3π/2

2 if θ ∈ (3π/2, 7π/4]

3 if θ ∈ (7π/4, 2π)

and

www.josis.org

http://www.josis.org

MIXED MAP LABELING 19

f ′(θ) ≤
{

1 if θ ∈ (0, π/4) ∪ (3π/2, 2π)

0 otherwise.

1 22

3

0

1

0

0

0

1

0

1

1

00

2

θ

f ′

3.2 Computing an optimal labeling
In this section, we show how to compute an optimal labeling for a given choice of θ. Using
the observations in the previous section, we know the shape ofE and F , and the maximum
number of internally labeled points in them. The main idea is to create a dynamic program
analogous to that in Section 2, where we recursively compute the optimal solutions to sub-
problems Φ(`, u, C`E , CuF), where C`E and CuF encode the labeling of points in E and F
respectively.

Let Φ(`, u, C`E , CuF) denote the maximum number of points in S(`, u) that can be labeled
internally, given configurations C`E = (I`, E`) and CuF = (Iu, Eu). That is, the maximum
number of points in S(`, u) that can be labeled internally assuming that (i) the points in I` ⊆
E(`) and Iu ⊆ F (u) are labeled internally, and (ii) the points in E`, Eu, and the remaining
points in E(`) and F (u) are labeled externally.

We now proceed completely analogous to Section 2.2. We define functions %, and Ψ that
have the same goal as before, and a function ς symmetric to %. With these functions, and
an argument analogous to Lemma 4 we can then give a recursive definition for Φ.

We define a function %(p, `, u, C`E) that restricts the universe of configurations UpE to
the sets compatible with the labeling so far. More formally, we have

%(p, `, u, C`E) =

(I, E)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(I, E) ∈ UpE ,
I ⊇ E(p) ∩ ((S(`, u) ∩ R̃p) ∪ I`), and

E =

{`} if ` ∈ E′′(p)
E` if ` 6∈ E′′(p) ∧ E` ⊂ E′′(p)
∅ otherwise.

Symmetrically, we define ς(p, `, u, CuF) as universe UpF restricted to the sets compatible

with the labeling so far:

ς(p, `, u, CuF) =

(I, E)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(I, E) ∈ UpF ,
I ⊇ F (p) ∩ ((S(`, u) ∩ R̃p) ∪ Iu), and

E =

{u} if u ∈ F ′′(p)
Eu if u 6∈ F ′′(p) ∧ Eu ⊂ F ′′(p)
∅ otherwise.

JOSIS, Number 13 (2016), pp. 3–32

20 LÖFFLER, NÖLLENBURG, STAALS

An argument similar to that of Lemma 4 then gives us the following recurrence for
Φ(`, u, C`E , CuF):

Φ(`, u, C`E , CuF) = max

Ψ(S(`, u)),
max

p∈S(`,u),
CpE∈%(p,`,u,C`E),
CpF∈ς(p,`,u,CuF)

 Ψ(R̃p ∩ S(`, u))
+ Φ(`, p, C`E , CpF)
+ Φ(p, u, CpE , CuF)

 ,

where, similar to Section 2.2, Ψ(P) is defined as the number of points in P , provided that
they can be labeled internally without intersecting each other or the existing part of the
labeling:

Ψ(P) =

|P |

if all labels in Λ(P ∪I`∪Iu∪ (S(`, u)\S(`, u))) are pairwise disjoint, and
their intersection with the leaders in Γ(PX ∪{`, u}∪E`∪Eu∪ (E(`)\I`)∪
(F (u) \ Iu)) is empty,

−∞ otherwise.

Computing Φ(`, u, C`E , CuF) We again use dynamic programming. The size of our table
is now O(n2|U`E ||UuF |). To compute the value of an entry Φ(`, u, C`E , CuF), we maximize
over O(

∑
p∈S(`,u) |UpE ||UpF |) other entries. For each such entry, we need to compute the

value of Ψ(P), for some set of points P . We can do this in O(n log n) time using the al-
gorithm from Section 2. In total this yields an O(n3|U`E ||UuF |(

∑
p∈S(`,u) |UpE ||UpF |) log n)

time algorithm. Next, we describe how to improve this to O(n2(n + |U`E | + |UuF |) log n +
n2(|U`E ||UuF |

∑
p∈S(`,u) |UpE ||UpF |)) time by precomputing Ψ.

Fix two points ` and u, and let Ψ′(p, C`E , CuF) := Ψ(R̃p ∩ S(`, u)), given configurations
C`E and CuF . We use a similar approach as in Section 2. We first compute Ψ′ for all points
p, assuming that no other points above or below S(`, u) interfere with S(`, u). That is, we
compute all values Ψ′(p, (∅, ∅), (∅, ∅)). This takes O(n log n) time using the same algorithm
as before. For each of the remaining pairs of configurations (C`E , CuF), we find the right-
most (with respect to the rotated coordinate system) point p in S(`, u) such that the label of
p conflicts with C`E or CuF . It then follows that Ψ′(p′, C`E , CuF) = −∞ for all p′ ∈ L̃p∪{p}.

Next, we describe how we can find the rightmost point that conflicts with C`E in
O(log n) time, after O(n log n) time preprocessing. We find the rightmost point that con-
flicts with CuF analogously. It then follows that we can compute Ψ′(p, C`E , CuF) for all
configurations and all points p ∈ S(`, u) in O(n log n + |U`E ||UuF | + (|U`E | + |UuF |) log n)
time in total.

The rightmost point that conflicts with a configuration C`E = (I, E) conflicts with the
set of internally labeled points I, or the set of externally labeled points in E ∪ E(`) \ I. For
both these sets we find the rightmost point conflicting with it, and return the rightmost
point of those two.

To find the rightmost point q conflicting with I, we use the same procedure as in the
previous section. We build a range tree on the corner points of Λ(S(`, u)), and use a priority
range query to find qr ∈ S(`, u) whose label intersects a query label λr, r ∈ I. We can thus
find q in O(|I| log n) = O(log n) time.

If the labels of S(`, u) are not contained in S(`, u) then we also need to find the rightmost
point whose label intersects a leader in Y := Γ(E ∪ E(`) \ I). To do this we need two more

www.josis.org

http://www.josis.org

MIXED MAP LABELING 21

`
S(`, u)

qs
`

z

S(`, u)

(a) (b)

r

s

Figure 8: We can find the leaders that can intersect a label from a point in S(`, u) by a series
of horizontal ray shooting queries.

data structures. We preprocess the edges of Z := Λ(S(`, u)) to allow for ray shooting
queries with rays of orientation θ. Since all edges of Z are either horizontal or vertical, and
all query rays have the same orientation, this can be done with a shear transformation and
two standard one-dimensional interval or segment trees T ′ (one for the horizontal edges of
Z and one for the vertical edges of Z). We can build these trees in O(n log n) time [9]. This
allows us to find the rightmost point qr whose label intersects a given leader γr in O(log n)
time. To find the rightmost point whose label intersects a leader among all leaders in Y

we use the following approach. We query T ′ with the leader γr ∈ Y closest to S(`, u), and
find qr (if it exists). We then find the first leader γs that is hit by a horizontal rightward
ray starting in r (see Figure 8), and recursively process γs. For any subsequent pair of such
leaders (γr, γs) we have that point s lies outside of the label λr. Since all but one of these
points lie in E(`), there are only a constant number of such pairs. Hence, we also need only
a constant number of queries in T ′, each of which takes O(log n) time.

The only question remaining is how to find the next leader γs given point r. To this end
we maintain a second data structure. We use a shear transformation such that the leaders
are all vertical. We then build a dynamic data structure D for horizontal ray shooting
queries among vertical half-lines. Such a data structure can be build inO(n log n) time, and
allows for O(log n) updates and queries [12]. 2 We can update D for the next configuration
C′`E in O(log n) time, since only a constant number of points change from being labeled
internally to labeled externally and vice versa.

Hence, after O(n log n) time preprocessing, we can compute the rightmost point con-
flicting with each configuration C`E in O(log n) time. The total time required to compute
Ψ′(p, C`E , CuF), for all points p ∈ S(`, u), is thus O(|U`E ||UuF |+ (n+ |U`E |+ |UuF |) log n).

So, after a total of O(n2|U`E ||UuF | + n2(n + |U`E | + |UuF |) log n)) time preprocessing,
the dynamic programming algorithm runs in O(n2|U`E ||UuF |

∑
p∈S(`,u) |UpE ||UpF |) time.

2Note that there is a simpler implementation that works in this case: maintain the half-lines (leaders) in a fully
persistent balanced binary search tree, ordered on x-coordinate. In addition, augment the tree to maintain the
maximum y-coordinate of the starting points of the half-lines in the subtree. When querying for the next half-line
hit by a rightward horizontal ray starting in point p, split T at px, and use the subtree maxima in the right tree to
find the first half-line whose starting point is at least py .

JOSIS, Number 13 (2016), pp. 3–32

22 LÖFFLER, NÖLLENBURG, STAALS

Combining these results, gives us a running time of

O(n2(n+ |U`E |+ |UuF |) log n+ n2(|U`E ||UuF |
∑

p∈S(`,u)
|UpE ||UpF |)) (1)

as claimed. Finally, we use that |U`E | and |UpE |, for all p, are all at most O(ne
′(θ) + δe(θ))

(Lemma 11), and that |UuF | and |UpF |, for all p, are all at most O(nf
′(θ) + δf(θ)) (Lemma 12).

We define the term ι(n, δ, θ) to bound the products of the form |U`E | · |UuF | · |UpE | · |UpF |
appearing in (1) for p ∈ S(`, u) in terms of n, δ and θ as follows

ι(n, δ, θ) = n2e
′(θ)+2f ′(θ) +n2e

′(θ)+f ′(θ)δf(θ) +ne
′(θ)+2f ′(θ)δe(θ)

+ne
′(θ)+f ′(θ) δe(θ)+f(θ) +n2e

′(θ) δ2f(θ) +n2f
′(θ) δ2e(θ)

+ne
′(θ) δe(θ)+2f(θ)+nf

′(θ) δ2e(θ)+f(θ)+ δ2e(θ)+2f(θ).

This allows us to rewrite expression (1) toO(n3(log n+ι(n, δ, θ))), where the summation
over p ∈ S(`, u) yields a factor n and ι(n, δ, θ) basically models how much the sub-problems
can influence each other. For δ = O(n), this gives us a worst case running time depend-
ing on the choice of θ that varies between O(n3 log n) if θ ∈ {π/2, 3π/4, π} and O(n13)
if θ ∈ (3π/2, 7π/4) ∪ (7π/4, 2π). We have that (for any p) |U`E | · |UuF | · |UpE | · |UpF | =
O(ι(n, δ, θ)). Thus, our dynamic programming table has size at most O(n2|U`E ||UuF |) =

O(n2
√
ι(n, δ, θ)). We conclude:

Proposition 13. Given a set P of n points and an angle θ, we can compute a labeling of P that
maximizes the number of internal labels in O(n3(log n + ι(n, δ, θ))) time and O(n2

√
ι(n, δ, θ))

space, where δ = min{n, 1/dmin} for the minimum distance dmin in P , and ι(n, δ, θ) models how
much sub-problems can influence each other.

3.3 An improved bound on the number of configurations
The analysis above, together with the fact that e(θ) and f(θ) are both at most three, yet not
simultaneously, gives us a worst case running time ofO(n13). We now study the situation a
bit more carefully, and show that the number of interesting configurations is much smaller.
More specifically, that we can replace e(θ) and f(θ) by quantities e∗(θ) and f∗(θ) that are
both at most one. This significantly improves the running time of our algorithm.

We start by observing that for some points q in E(`), the sub-problem S(`, u) does
not have a labeling compatible with q, irrespective of whether q is labeled internally or
externally. Let Q(`) denote the set of such points. It follows that we can restrict our-
selves to labelings, and thus configurations, that do not contain points from Q(`). Let
U∗`E = {(I, E) | (I, E) ∈ U`E ∧ I ⊆ E(`) \Q(`)} denote this subset of configurations.

Lemma 14. For every configuration (I, E) ∈ U∗`E , the set I has size at most two.

Proof. By Corollary 8 there are at most e(θ) points in E(`) that can be labeled internally
simultaneously. Hence |I| ≤ e(`). For θ ∈ [0, 3π/2] ∪ [7π/4, 2π] we have e(θ) ≤ 2, and thus
the lemma follows immediately. For θ ∈ (3π/2, 7π/4) we have e(θ) ≤ 3. We prove this
remaining case by contradiction.

Assume that θ ∈ (3π/2, 7π/4), and that I = {a, b, c}. Since the regionE(`) has size 1×3,
it follows that one of these points, say point a, lies in the triangular region B̃` ∩ L̃r ∩ Tr,

www.josis.org

http://www.josis.org

MIXED MAP LABELING 23

`
p

ra

Figure 9: S(`, u) is incompatible with any point a ∈ B̃` ∩ L̃r ∩ Tr (the orange region).

with r = (`x + 1, `y + 1), see Figure 9. Let p be a point in S(`, u) whose label intersects λa.
Using that θ ∈ (3π/2, 7π/4) it follows that p is to the bottom-left of a. Since the labels are to
the top-right of a point, we then obtain that a ∈ λp. Therefore, the leader γa also intersects
λp. So, both the label and the leader of a interfere with S(`, u), and thus a ∈ Q(`). It follows
that a 6∈ I. Contradiction.

Lemma 15. Let p be a point in S(`, u), and let (I, E) ∈ U∗`E . The label of p intersects at most one
label λq of a point q ∈ I.

Proof. When |I| ≤ 1, the lemma is trivially true. By Lemma 14, we otherwise have |I| ≤ 2
and θ ∈ (0, π/4)∪ (3π/2, 2π). Let I = {a, b}. For the case θ ∈ (0, π/4), assume w.l.o.g. that b
is the leftmost point. Since a and b are both in I, their labels are disjoint, and thus we have
bx + 1 < ax (see Figure 10(a)). Furthermore, we have py ≥ `y ≥ by . Since λp intersects λb,
but p 6∈ λb this means px < bx. Since λp has width one, it thus cannot intersect λa.

For the case θ ∈ (3π/2, 2π) we use a similar argument. Assume w.l.o.g. that a is the
topmost point, and thus ay > by + 1 (see Figure 10(b)). Since p ∈ S(`, u), λp intersects λa,
and a 6∈ λp we have that p is to the top-left of a. And thus, py > ay > by + 1. The label of b
has height at most one, and thus cannot intersect λp.

Lemma 16. Let C = ({a, b}, E) ∈ U∗`E , where a is to the right of b if θ ∈ (0, π/4), and to the top of
b if θ ∈ (3π/2, 2π). Point b uniquely determines a.

Proof. We prove this by contradiction. Assume that there is another configuration C′ =
({a′, b}, E ′) ∈ U∗`E , such that a′ ∈ E(`) \Q(`) is to the right of b in case θ ∈ (0, π/4), or above
b in case θ ∈ (3π/2, 2π).

The points a and b can influence the labeling of S(`, u). Hence, their labels intersect with
labels of points in S(`, u). By Lemma 15 λa and λb cannot both intersect the same label of a
point in S(`, u). So, let p be the point whose label intersects λa, and let q be the point whose
label intersects λb. See Figure 11.

JOSIS, Number 13 (2016), pp. 3–32

24 LÖFFLER, NÖLLENBURG, STAALS

`

p

p

b
a

`

(a) (b)

a

b

Figure 10: Point p ∈ S(`, u) can intersect only one label of a point in E(`) \ Q(`). (a) The
case θ ∈ (0, π/4). (b) The case θ ∈ (3π/2, 2π).

`
q

p

b

a

(a) (b)

a

b

a′

`

a′

Figure 11: The points a, a′, and b in E(`) and the label(s) in S(`, u) they intersect. (a) The
case θ ∈ (0, π/4), note that this figure is not on scale. (b) The case θ ∈ (3π/2, 2π).

We start with the case θ ∈ (0, π/4). Point a is to the right of b, and λa and λb are disjoint.
Hence, ax > bx + 1. Since λp intersects λa, and p 6∈ λb, it follows that p lies above λp. Hence
py > by + 1. Again using that λp intersects λa, it then also follows that ay > by . Using the
same argument we get a′y > by . Now in the configuration C, point a′ is labeled externally.
However, this means its leader intersects λb. Hence, C 6∈ U∗`E . Contradiction.

www.josis.org

http://www.josis.org

MIXED MAP LABELING 25

θ
0

π/2

π

3π/2

f∗

e∗

f ′

e′

Figure 12: A depiction of the upper bounds on e∗, e′, f∗, and f ′ as a function of θ. The
marked circular arcs indicate the ranges of θ, where e∗(θ), e′(θ), f∗(θ), and f ′(θ) take a
value of 1; outside these ranges the value is 0.

For the case θ ∈ (3π/2, 2π) we have that by + 1 < ay . As in the proof of Lemma 14
we have that ay < `y + 1, and hence by < `y . Using that λq does not intersect γ`, we have
qy > `y . Since q 6∈ λb it follows that qx < bx. In configuration C′, λa′ and λb are also pairwise
disjoint. It then follows that a′ is to the top-right of b. In the configuration C = ({a, b}, E),
point a′ is labeled externally. However, this means its leader intersects λb. Hence, C 6∈ U∗`E .
Contradiction.

Corollary 17. The number of configurations in U∗`E is at most O(ne
′(θ) + δe

∗(θ)), where e∗(θ) =
min{1, e(θ)}.

Note that Lemmas 15 and 16 also allow us to generate only the relevant configurations.
It is easy to generate all configurations with only one internally labeled point in E(p), to
generate the configurations with two points labeled internally we consider the points in
E(`) from left to right when θ ∈ (0, π/4) and bottom to top if θ ∈ (3π/2, 2π). For each such
point b, the other point a ∈ E(`) labeled internally is the topmost point to the right (top) of
λb. We can precompute all such pairs (a, b) using a priority range query.

We can again use a symmetric argument for the number of configurations in T̃u. Fig-
ure 12 gives a graphical summary of these results. Similarly to ι(n, δ, θ) in Section 3.2 we
now define ι∗(n, δ, θ) as

ι∗(n, δ, θ) = n2e
′(θ)+2f ′(θ) +n2e

′(θ)+f ′(θ)δf
∗(θ) +ne

′(θ)+2f ′(θ)δe
∗(θ)

+ne
′(θ)+f ′(θ) δe

∗(θ)+f∗(θ) +n2e
′(θ) δ2f

∗(θ) +n2f
′(θ) δ2e

∗(θ)

+ne
′(θ) δe

∗(θ)+2f∗(θ)+nf
′(θ) δ2e

∗(θ)+f∗(θ)+ δ2e
∗(θ)+2f∗(θ).

which, by case distinction on the intervals of θ marked in Figure 12, solves to:

JOSIS, Number 13 (2016), pp. 3–32

26 LÖFFLER, NÖLLENBURG, STAALS

ι∗(n, δ, θ) =

δ2 if θ = 0

n2δ2 if θ ∈ (0, π/4)

δ2 if θ ∈ [π/4, π/2)

0 if θ = π/2

δ2 if θ ∈ (π/2, 3π/4)

0 if θ = 3π/4

δ2 if θ ∈ (3π/4, π)

0 if θ = π

δ2 if θ ∈ (π, 5π/4]

n2δ2 if θ ∈ (5π/4, 3π/2)

δ2 if θ = 3π/2

n4 if θ ∈ (3π/2, 2π).

δ2

δ2
0 δ2

δ2

0

0

δ2

δ2n4

n2δ2

n2δ2

θ

δ2

δ2

For δ = O(n), this improves the worst case running time to values that vary between
O(n3 log n) and O(n7), depending on the choice of θ. We thus obtain the following result:

Theorem 18. Given a set P of n points and an angle θ, we can compute a labeling of P that
maximizes the number of internal labels in O(n3(log n+ ι∗(n, δ, θ))) time and O(n2

√
ι∗(n, δ, θ))

space, where δ = min{n, 1/dmin} for the minimum distance dmin in P .

Recall that for θ ∈ {0, 3π/2} Theorem 6 provides a better bound of O(n3(log n + δ))
compared to the O(n3(log n+ δ2)) bound of Theorem 18.

4 Extensions and limitations

So far, we have considered a stylized version of the question we set out to solve. In this
section we discuss how our solution may be adapted and extended, depending on the exact
requirements of the application.

4.1 Weighted points

Our approach directly extends to the situation in which the points have a weight, and we
wish to maximize the total weight of the points labeled internally. Indeed, the leader of
the “rightmost” point labeled externally still partitions the problem into two almost in-
dependent sub-problems as before, and hence we can solve the problem using dynamic
programming. The only difference is that the recurrence Φ now represents the sum of
the weights rather than the number of points labeled internally. The running time of our
algorithm remains unaffected.

4.2 Optimizing the direction

Rather than fixing the direction for the leaders in advance, we may be willing to let the
algorithm specify the optimal orientation that maximizes the number of points that can
be labeled internally. Or, perhaps we wish to compute a chart that plots the maximum
number of internally labeled points as a function of the leader orientation θ, leaving the
final decision to the judgement of the user.

www.josis.org

http://www.josis.org

MIXED MAP LABELING 27

In both scenarios, we need to efficiently iterate over all possible orientations. We adapt
our method straightforwardly. LetQ be the set of all 4n corner points of all potential labels.
For every pair p, q ∈ Q consider the slope θp,q of the line through p and q. All values θp,q
partition all possible angles into O(n2) intervals. For all values θ in the same interval J ,
any leader γp intersects the same set of potential labels, so the optimal set of internal labels
is constant throughout J . We compute it separately for each interval.

By applying Theorem 18, we achieve a total ofO(n2 ·n3(log n+ι(n, δ, θ))) = O(n5(log n+
ι(n, δ, θ))) time to compute the optimal labelings for all orientations, or to optimize the
orientation by performing a simple linear scan.

4.3 Using multiple directions and placements

In this paper, we studied a labeling model where each label has two possible locations:
internal or external. However, all internal labels are required to be in the same location (the
top right of their points) and all external leaders are required to leave in the same direction.
While using a restricted set of options may be justified from an aesthetic point of view,
in practice, it would be more reasonable to allow multiple possible internal placements
and/or external leader directions.

It is well-known that optimally placing internal labels when multiple locations for each
label are available is NP-hard [10,23]. More specifically, it is NP-hard to optimize the num-
ber of internally placed labels, when we do not label the remaining points at all. This does
not necessarily imply that the same problem is still NP-hard when the remaining points
must be labeled externally, since the leaders this would require subdivide the problem.
However, we do conjecture the problem is NP-hard in this case.

When allowing only one internal placement location, but multiple leader directions,
the situation looks more promising. If we require leader directions to be clustered (when
traversing the outer boundary of the map), as would be necessary for infinite leaders or
for leader directions that are separated by more than 90◦, we believe our approach extends
naturally: one could compute sub-problems for multiple directions, although care must be
taken when considering the shapes of the combined E and F regions. When we do not
require clustering, it is less clear how to extend the approach, but for a constant number of
leader directions a dynamic programming approach still seems feasible.

For the most general version of the problem, with multiple possible internal placements
and external leader directions, we believe a different approach is necessary. It would be
very interesting to know if an approximation algorithm exists for this problem.

4.4 Routing the outer leaders

Once the core combinatorial problem of deciding which points have to be labeled internally
is solved, it remains to route the outer leaders and place the external labels. Since our goal
in this paper is to maximize the number of internally labeled points, we are only interested
in finding a valid labeling, in which neither labels nor leaders intersect each other. Let us
assume that θ ∈ [0, π/2]∪ [3π/2, 2π], i.e., all external labels are oriented to the left. The case
of labels oriented to the right is symmetric. We consider the leaders in counterclockwise
order around the boundary of M and place them one by one starting with the topmost
leader. The first label is placed with its lower right corner anchored at the endpoint of
its inner leader. For all subsequent labels we test if the label anchored at the endpoint of

JOSIS, Number 13 (2016), pp. 3–32

28 LÖFFLER, NÖLLENBURG, STAALS

(a) θ = 0 (b) θ = π/3 (c) θ = 7π/4 (d) θ = 11π/6

Figure 13: Examples for routing the outer leaders and placing the external labels for differ-
ent slopes.

the inner leader intersects the previously placed label. If there is no intersection, we use
that label position. Otherwise, we draw an outer leader extending horizontally to the left
starting from the endpoint of the inner leader until the label can be placed without overlap.
Obviously this algorithm takes only linear time. Figure 13 shows the resulting labelings
for four different slopes. We note that depending on the slope θ of the inner leaders other
methods for routing the outer leaders might yield more pleasing external labelings. This
is, however, beyond the scope of this paper.

Moreover, the approach described above assumes that there is always sufficient space
in the external part of the map to place all external labels and their leaders. This may
lead to long chains of labels, e.g., as shown in Figure 13(c). In reality, there is a trade-off
between the internal map space, i.e., the actual mapM containing the feature points, and
the external map space outside M. The larger the bounding box of the union of M and
all external labels, the smaller the scale ofM (assuming thatM and all labels are shown
on a fixed-size display). It is clear, however, that if we bound the available external map
space, an instance may become infeasible to solve, for some or even for all leader slopes θ.
Thus, it is interesting to consider the optimization problem to place as many external labels
as possible within a bounded external map space and for a given slope θ. In addition to
selecting which labels to display, the task is to determine for each leader where to place its
bend, which directly and indirectly influences the space usage. This is an interesting open
algorithmic question in its own. Recall that the algorithm described above always places
the bend on the boundary ofM. Optimizing over all θ ∈ [0, 2π) is an obvious extension,
either as a secondary step after maximizing the number of internal labels (the topic of this
paper) or in combination with it. One may also try to determine as a first step a promising
slope or range of slopes for which leaders generally point towards larger areas of free space
aroundM.

4.5 Non-square labels
Square labels are not very realistic in most map-labeling applications. Their use is justified
by the observation that if all labels are homothetic rectangles, we can scale the plane in one
dimension to obtain square labels without otherwise changing the problem. Nonetheless,
reality is not quite that simple, for two reasons: firstly, the scaling does alter inter-point
distances, so if we wish to parameterize our solution by dmin we need to take this into
account. Secondly, in real-world applications, labels may arguably have the same height,
but not usually the same width.

www.josis.org

http://www.josis.org

MIXED MAP LABELING 29

If all labels are homothetic rectangles with a height of one and a width of w, scaling the
plane by a factor 1/w in the horizontal direction potentially decreases the closest interpoint
distance by the same factor. Now, the number of points in a unit-area region that do not
contain each other’s potential labels is bounded by δw, immediately yielding a result of
O(n3(log n+ ι(n, δw, θ))) using exactly the same approach.

When all labels have equal heights but may have arbitrary widths, we conjecture that a
variation of our approach will still work, but a careful analysis of the intricacies involved
is required. If the labels may also have arbitrary heights the problem is open. It is unclear
if there is a polynomial time solution in this case.

4.6 Obstacles
In this paper, we have considered only abstract point sets to be labeled, using leaders that
are allowed to go anywhere, as long as they do not intersect any internal labels. While
this is justified in some applications (e.g., in anatomical drawings, it is common practice
to ignore the drawing when placing the leaders, as they are very thin and do not occlude
any part of the drawing [13, 26]), in others this may be undesirable (in certain map styles,
leaders may be confused for region boundaries or linear features). As a solution, we may
identify a set of polygonal obstacles in the map, that cannot be intersected by leaders or
internal labels.

In this setting, obviously not every input has a valid labeling: a point that lies inside
an obstacle can never be labeled, or obstacles may surround points or force points into
impossible configurations in more complex ways. Nonetheless, we can test whether an
input has a valid labeling and if so, compute the labeling that maximizes the number of
internal labels in polynomial time with our approach.

The main idea is to preprocess the input points in a similar way as in the beginning of
Section 3. Whenever a point has a potential leader that intersects an obstacle, it must be
labeled internally; similarly, whenever a point has a potential internal label that intersects
an obstacle, it must be labeled externally. If we include such “forced” leaders or labels into
our set of obstacles and apply this approach recursively, we will either find a contradiction
or be left with a set of points whose potential leaders and potential internal labels do not
intersect any obstacle, and we can apply our existing algorithm on this point set.

The same approach may be used for point sets that are not in general position: if we
disallow leaders that pass through other points, they are forced to be labeled internally.
Note that this again may result in situations where no valid labeling exists.

5 Concluding remarks

We studied algorithms for map labeling in a recently proposed mixed map labeling model.
In this model, we have a map with a set of feature points, each of which should be labeled
using either an internal label or an external label. Internal labels are placed directly on
the map, near their feature points, and external labels are placed along the boundary of
the map and connected to their feature points by a leader line. The labels are not allowed
to intersect each other, or other leaders. We then wish to maximize the number of points
labeled internally.

We presented an efficient algorithm for when the internal labels have the same size and
a fixed position with respect to their feature points, and the leaders are all parallel to a given

JOSIS, Number 13 (2016), pp. 3–32

30 LÖFFLER, NÖLLENBURG, STAALS

orientation θ ∈ [0, 2π). The running time of our algorithm depends on the number of points
n, the “density” of the point set δ, the width of the labels w, and, perhaps surprisingly, the
orientation θ. Furthermore, we showed how to find an orientation that maximizes the
number of internal labels, and we investigated how the aspect ratio of the labels influences
our algorithm.

Perhaps the most interesting question is whether our algorithms are applicable in prac-
tice. This would involve validating the model, , how many additional points can be labeled
internally compared to an “internal labels only” model, checking whether or not the pro-
duced maps are visually pleasing, and testing whether or not the running time of our algo-
rithm is acceptable. The running time of our algorithm is O(n3(log n + ι(n, δw, θ))), where
ι(n, δw, θ) is a term measuring the “interference” between sub-problems. Expressed as a
function of only n, the running time varies between O(n3 log n) and O(n7). At first glance,
this may seem prohibitively large. However, we expect that in most cases the interference
between the sub-problems is small (as it seems likely that in most cases the number of
points in the regions E(·). F (·), etc. is small). Therefore we expect the running times to be
closer toO(n3 log n) than toO(n7). Furthermore, in many applications, e.g., maps on small,
mobile devices or thematic maps for newspapers and other public media, the number of
labels to show is also relatively small, say 10–50. In such a setting, our algorithms may well
prove themselves to be sufficiently fast in practice. It would be interesting to verify this.
Additionally, our theoretic results show that the amount of interference heavily depends
on the orientation θ. Another interesting question would be to check if this dependence
also actually shows up in practice, or if the interference is more or less the same for every
orientation.

There are also some theoretical questions remaining. For example, can we still compute
an optimal mixed map labeling efficiently if the labels have different heights? It would also
be interesting to see if we can reduce the running time for our algorithm that computes an
optimal orientation θ. We currently compute a new labeling from scratch after each event.
It might be possible to reuse the labeling computed before, as at any event only two points
change order.

Acknowledgments

We would like to thank one of the reviewers for the observation that our algorithm extends
to weighted points. Work on this paper was partially supported by the Netherlands Organ-
isation for Scientific Research (NWO) under grant 639.021.123 and 612.001.022, respectively,
and by the Danish National Research Foundation under grant nr. DNRF84.

References

[1] AGARWAL, P. K., VAN KREVELD, M., AND SURI, S. Label placement by maximum
independent set in rectangles. Computational Geometry: Theory and Applications 11, 3–4
(1998), 209–218. doi:10.1016/S0925-7721(98)00028-5.

[2] BARTH, L., GEMSA, A., NIEDERMANN, B., AND NÖLLENBURG, M. On the readability
of boundary labeling. In Graph Drawing (GD) (2015), E. Di Giacomo and A. Lubiw,

www.josis.org

http://dx.doi.org/10.1016/S0925-7721(98)00028-5
http://www.josis.org

MIXED MAP LABELING 31

Eds., Lecture Notes in Computer Science, Springer, pp. 515–527. doi:10.1007/978-3-
319-27261-0_42.

[3] BEKOS, M., KAUFMANN, M., NÖLLENBURG, M., AND SYMVONIS, A. Boundary la-
beling with octilinear leaders. Algorithmica 57 (2010), 436–461. doi:10.1007/s00453-
009-9283-6.

[4] BEKOS, M., KAUFMANN, M., PAPADOPOULOS, D., AND SYMVONIS, A. Combining
traditional map labeling with boundary labeling. In Proc. 37th International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM) (2011), vol. 6543
of Lecture Notes in Computer Science, pp. 111–122. doi:10.1007/978-3-642-18381-2_9.

[5] BEKOS, M. A., KAUFMANN, M., AND SYMVONIS, A. Efficient labeling of
collinear sites. Journal of Graph Algorithms and Applications 12, 3 (2008), 357–380.
doi:10.7155/jgaa.00170.

[6] BEKOS, M. A., KAUFMANN, M., SYMVONIS, A., AND WOLFF, A. Boundary labeling:
Models and efficient algorithms for rectangular maps. Computational Geometry: Theory
and Applications. 36, 3 (2007), 215–236. doi:10.1016/j.comgeo.2006.05.003.

[7] BENKERT, M., HAVERKORT, H., KROLL, M., AND NÖLLENBURG, M. Algorithms for
multi-criteria boundary labeling. Journal of Graph Algorithms and Applications 13, 3
(2009), 289–317. doi:http://dx.doi.org/10.7155/jgaa.00189.

[8] CHALERMSOOK, P., AND CHUZHOY, J. Maximum independent set of rectangles. In
Discrete Algorithms (SODA) (2009), pp. 892–901. doi:10.1137/1.9781611973068.97.

[9] DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O. Com-
putational Geometry: Algorithms and Applications, 2nd ed. Springer, Berlin, Germany,
2000.

[10] FORMANN, M., AND WAGNER, F. A packing problem with applications to let-
tering of maps. In Computational Geometry (SoCG) (1991), ACM, pp. 281–288.
doi:10.1145/109648.109680.

[11] GEMSA, A., HAUNERT, J.-H., AND NÖLLENBURG, M. Boundary-labeling algorithms
for panorama images. In Advances in Geographic Information Systems (SIGSPATIAL)
(2011), ACM, pp. 289–298. doi:10.1145/2093973.2094012.

[12] GIORA, Y., AND KAPLAN, H. Optimal dynamic vertical ray shooting in rectilin-
ear planar subdivisions. ACM Transactions on Algorithms 5, 3 (July 2009), 28:1–28:51.
doi:10.1145/1541885.1541889.

[13] GRAY, H. Anatomy of the human body. Lea & Febiger, 1918.

[14] HARRIE, L., STIGMAR, H., KOIVULA, T., AND LEHTO, L. An algorithm for icon la-
belling on a real-time map. In Spatial Data Handling (SDH) (2005), Springer Berlin
Heidelberg, pp. 493–507. doi:10.1007/3-540-26772-7_38.

[15] HUANG, Z.-D., POON, S.-H., AND LIN, C.-C. Boundary labeling with flexible label
positions. In Algorithms and Computation (WALCOM) (2014), vol. 8344 of Lecture Notes
in Computer Science, Springer, pp. 44–55. doi:10.1007/978-3-319-04657-0_7.

JOSIS, Number 13 (2016), pp. 3–32

http://dx.doi.org/10.1007/978-3-319-27261-0_42
http://dx.doi.org/10.1007/978-3-319-27261-0_42
http://dx.doi.org/10.1007/s00453-009-9283-6
http://dx.doi.org/10.1007/s00453-009-9283-6
http://dx.doi.org/10.1007/978-3-642-18381-2_9
http://dx.doi.org/10.7155/jgaa.00170
http://dx.doi.org/10.1016/j.comgeo.2006.05.003
http://dx.doi.org/http://dx.doi.org/10.7155/jgaa.00189
http://dx.doi.org/10.1137/1.9781611973068.97
http://dx.doi.org/10.1145/109648.109680
http://dx.doi.org/10.1145/2093973.2094012
http://dx.doi.org/10.1145/1541885.1541889
http://dx.doi.org/10.1007/3-540-26772-7_38
http://dx.doi.org/10.1007/978-3-319-04657-0_7

32 LÖFFLER, NÖLLENBURG, STAALS

[16] IMHOF, E. Positioning names on maps. The American Cartographer 2, 2 (1975), 128–144.

[17] KAUFMANN, M. On map labeling with leaders. In Festschrift Mehlhorn, S. Albers,
H. Alt, and S. Näher, Eds., vol. 5760 of Lecture Notes in Computer Science. Springer,
2009, pp. 290–304. doi:10.1007/978-3-642-03456-5_20.

[18] KINDERMANN, P., LIPP, F., AND WOLFF, A. Boundary labeling for annotations in
texts. In Graph Drawing (GD) (2014), C. A. Duncan and A. Symvonis, Eds., vol. 8871
of Lecture Notes in Computer Science, Springer, pp. 76–88. doi:10.1007/978-3-662-45803-
7_7.

[19] KINDERMANN, P., NIEDERMANN, B., RUTTER, I., SCHAEFER, M., SCHULZ, A., AND
WOLFF, A. Two-sided boundary labeling with adjacent sides. In Algorithms and Data
Structures (WADS) (2013), vol. 8037 of Lecture Notes in Computer Science, pp. 463–474.
doi:10.1007/978-3-642-40104-6_40.

[20] KLAU, G. W., AND MUTZEL, P. Optimal labeling of point features in rectangular
labeling models. Mathematical Programming 94, 2 (2003), 435–458. doi:10.1007/s10107-
002-0327-9.

[21] LÖFFLER, M., AND NÖLLENBURG, M. Shooting bricks with orthogonal laser beams:
A first step towards internal/external map labeling. In Proc. Canadian Conference Com-
putational Geometry (CCCG) (2010), University of Manitoba, pp. 203–206.

[22] LÖFFLER, M., NÖLLENBURG, M., AND STAALS, F. Mixed map labeling. In Proc. 9th
International Conference on Algorithms and Complexity, Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 339–351. doi:10.1007/978-3-319-18173-8_25.

[23] MARKS, J., AND SHIEBER, S. The computational complexity of cartographic label
placement. Tech. rep., Harvard University, 1991.

[24] MEHLHORN, K., AND NÄHER, S. Dynamic fractional cascading. Algorithmica 5, 1–4
(1990), 215–241. doi:10.1007/BF01840386.

[25] NÖLLENBURG, M., POLISHCHUK, V., AND SYSIKASKI, M. Dynamic one-sided bound-
ary labeling. In Advances in Geographic Information Systems (SIGSPATIAL) (2010),
pp. 310–319. doi:10.1145/1869790.1869834.

[26] PAULSEN, F., AND WASCHKE, J. Sobotta, Atlas of Human Anatomy, 15th ed. Urban &
Fischer, 2011.

[27] RYLOV, M. A., AND REIMER, A. W. A comprehensive multi-criteria model for high
cartographic quality point-feature label placement. Cartographica 49, 1 (2014), 52–68.
doi:10.3138/carto.49.1.2137.

[28] VAN KREVELD, M., STRIJK, T., AND WOLFF, A. Point labeling with sliding labels.
Computational Geometry: Theory and Applications 13, 1 (1999), 21–47. doi:10.1016/S0925-
7721(99)00005-X.

[29] WOLFF, A., AND STRIJK, T. The map labeling bibliography. http:�i11www.iti.kit.
edu/~awolff/map-labeling/bibliography/.

www.josis.org

http://dx.doi.org/10.1007/978-3-642-03456-5_20
http://dx.doi.org/10.1007/978-3-662-45803-7_7
http://dx.doi.org/10.1007/978-3-662-45803-7_7
http://dx.doi.org/10.1007/978-3-642-40104-6_40
http://dx.doi.org/10.1007/s10107-002-0327-9
http://dx.doi.org/10.1007/s10107-002-0327-9
http://dx.doi.org/10.1007/978-3-319-18173-8_25
http://dx.doi.org/10.1007/BF01840386
http://dx.doi.org/10.1145/1869790.1869834
http://dx.doi.org/10.3138/carto.49.1.2137
http://dx.doi.org/10.1016/S0925-7721(99)00005-X
http://dx.doi.org/10.1016/S0925-7721(99)00005-X
http://i11www.iti.kit.edu/~awolff/map-labeling/bibliography/
http://i11www.iti.kit.edu/~awolff/map-labeling/bibliography/
http://www.josis.org

	Introduction
	Leaders from the left
	Geometric properties
	Computing an optimal labeling

	Other leader directions
	Bounding the number of configurations
	Computing an optimal labeling
	An improved bound on the number of configurations

	Extensions and limitations
	Weighted points
	Optimizing the direction
	Using multiple directions and placements
	Routing the outer leaders
	Non-square labels
	Obstacles

	Concluding remarks

