36 research outputs found

    Magnetic pyroxenes LiCrGe2O6 and LiCrSi2O6: dimensionality crossover in a non-frustrated S=3/2 Heisenberg model

    Full text link
    The magnetism of magnetoelectric SS = 3/2 pyroxenes LiCrSi2_2O6_6 and LiCrGe2_2O6_6 is studied by density functional theory (DFT) calculations, quantum Monte Carlo (QMC) simulations, neutron diffraction, as well as low-field and high-field magnetization measurements. In contrast with earlier reports, we find that the two compounds feature remarkably different, albeit non-frustrated magnetic models. In LiCrSi2_2O6_6, two relevant exchange integrals, J1J_1 \simeq 9 K along the structural chains and Jic1J_{\text{ic1}} \simeq 2 K between the chains, form a 2D anisotropic honeycomb lattice. In contrast, the spin model of LiCrGe2_2O6_6 is constituted of three different exchange couplings. Surprisingly, the leading exchange Jic1J_{\text{ic1}} \simeq 2.3 K operates between the chains, while J1J_1 \simeq 1.2 K is about two times smaller. The additional interlayer coupling Jic2J_{\text{ic2}} \simeq J1J_1 renders this model 3D. QMC simulations reveal excellent agreement between our magnetic models and the available experimental data. Underlying mechanisms of the exchange couplings, magnetostructural correlations, as well as implications for other pyroxene systems are discussed.Comment: 11 pages, 8 figures, 3 tables + Supplementary informatio

    Phenomenological Landau analysis of predicted magnetoelectric fluorides: KMnFeF6_{6} and Ba2_{2}Ni7_{7}F18_{18}

    Full text link
    Recently, we predicted based on symmetry considerations that KMnFeF6_{6} and Ba2_{2}Ni7_{7}F18_{18} are likely magnetoelectric multiferroic materials. In this contribution, we investigate with Landau theory and crystal structure considerations the polarization and the linear magnetoelectric effect in these materials. Based on these two examples, we show that any magnetoferroelectric will display additional electrical polarization below its magnetic ordering temperature. This additional electrical polarization is not related to the linear magnetoelectric effect. Its magnitude depends on the dielectric susceptibility.Comment: 11 pages, accepted for publication in Journal of Physics: Condensed Matte

    Magnetic properties of the low-dimensional spin-1/2 magnet \alpha-Cu_2As_2O_7

    Full text link
    In this work we study the interplay between the crystal structure and magnetism of the pyroarsenate \alpha-Cu_2As_2O_7 by means of magnetization, heat capacity, electron spin resonance and nuclear magnetic resonance measurements as well as density functional theory (DFT) calculations and quantum Monte Carlo (QMC) simulations. The data reveal that the magnetic Cu-O chains in the crystal structure represent a realization of a quasi-one dimensional (1D) coupled alternating spin-1/2 Heisenberg chain model with relevant pathways through non-magnetic AsO_4 tetrahedra. Owing to residual 3D interactions antiferromagnetic long range ordering at T_N\simeq10K takes place. Application of external magnetic field B along the magnetically easy axis induces the transition to a spin-flop phase at B_{SF}~1.7T (2K). The experimental data suggest that substantial quantum spin fluctuations take place at low magnetic fields in the ordered state. DFT calculations confirm the quasi-one-dimensional nature of the spin lattice, with the leading coupling J_1 within the structural dimers. QMC fits to the magnetic susceptibility evaluate J_1=164K, the weaker intrachain coupling J'_1/J_1 = 0.55, and the effective interchain coupling J_{ic1}/J_1 = 0.20.Comment: Accepted for publication in Physical Review

    Prediction for new magnetoelectric fluorides

    Get PDF
    We use symmetry considerations in order to predict new magnetoelectric fluorides. In addition to these magnetoelectric properties, we discuss among these fluorides the ones susceptible to present multiferroic properties. We emphasize that several materials present ferromagnetic properties. This ferromagnetism should enhance the interplay between magnetic and dielectric properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed Matte

    Experimental evidence for an intermediate phase in the multiferroic YMnO3

    Get PDF
    We have studied YMnO3_{3} by high-temperature synchrotron X-ray powder diffraction, and have carried out differential thermal analysis and dilatometry on a single crystal sample. These experiments show two phase transitions at about 1100K and 1350K, respectively. This demonstrates the existence of an intermediate phase between the room temperature ferroelectric and the high temperature centrosymmetric phase. This study identifies for the first time the different high-temperature phase transitions in YMnO3_{3}.Comment: 10 pages 5 figures. New version, Additional data, Journal of Physics: Condensed Matter, in Pres

    Magnetic and magnetoelectric properties of Ho2BaNiO5

    Get PDF
    The compounds R2BaNiO5, with R a rare earth, exhibit low dimensional magnetism including a Haldane gap, originating from Ni2+ chains. In these compounds, the rare-earth ions give rise to three-dimensional antiferromagnetic ordering which does not eliminate the Haldane-like behavior. We study here the interplay between magnetic and dielectric properties of Ho2BaNiO5 on a polycrystalline sample. We show that a linear magnetoelectric effect exists in this compound. We discuss our results in the light of the rich magnetic phase diagram of Ho2BaNiO5.
    corecore