8 research outputs found

    Molecular cytogenetic characterisation of Salix viminalis L. using repetitive DNA sequences

    Get PDF
    Abstract Salix viminalis L. (2n=38) is a diploid dicot species belonging to the Salix genus of the Salicaceae family. This short-rotation woody crop is one of the most important renewable bioenergy resources worldwide. In breeding for high biomass productivity, limited knowledge is available on the molecular cytogenetics of willow, which could be combined with genetic linkage mapping. The present paper describes the adaptation of a fluorescence in situ hybridisation (FISH) protocol as a new approach to analyse the genomic constitution of Salix viminalis using the heterologous DNA clones pSc119.2, pTa71, pTa794, pAs1, Afafamily, pAl1, HT100.3, ZCF1 and the GAA microsatellite marker. Three of the nine probes showed unambiguous signals on the metaphase chromosomes. FISH analysis with the pTa71 probe detected one major 18S-5.8S-26S rDNA locus on the short arm of one chromosome pair; however, the pTa794 rDNA site was not visible. One chromosome pair showed a distinct signal around the centromeric region after FISH with the telomere-specific DNA clone HT100.3. Two chromosome pairs were found to have pAs1 FISH signals, which represent a D-genome-specific insert from Aegilops tauschii. Based on the FISH study, a set of chromosomes with characteristic patterns is presented, which could be used to establish the karyotype of willow species

    Serosurvey of pathogenic hantaviruses among forestry workers in Hungary

    No full text
    Objectives: The aim of the study was to survey the prevalence of human hantavirus infections among forestry workers, who are considered a risk population for contracting the disease. Sera collected from volunteers were tested for antibodies against Dobrava-Belgrade (DOBV) and Puumala (PUUV) viruses. Material and Methods: For serological analyses, full capsid proteins of DOBV and PUUV viruses were produced in a bacterial expression system, while Ni-resin was used for protein purification. Samples were screened for anti-hantavirus antibodies by ELISA, results were confirmed by Western blot analysis. Results: A total of 835 samples collected from 750 males and 85 females were tested by indirect ELISA and positive test results were confirmed by Western blot assay. Out of the 45 ELISA-reactive samples, 38 were confirmed by Western blot analysis. The regional distribution of seropositive individuals was as follows: 1.9% (2/107) in the Danube-Tisza Plateau (Great Plains), 3.1% (10/321) in the Southern Transdanubian region, 5.2% (13/248) in the Northern Transdanubian, and 8.2% (13/159) in the North Hungarian Mountains. Conclusions: Our data show marked geographic differences in seroprevalence of pathogenic hantaviruses within Hungary, indicating elevated exposure to hantavirus infections in some areas

    Molecular survey of RNA viruses in hungarian bats: Discovering novel astroviruses, coronaviruses, and caliciviruses

    No full text
    Background: Bat-borne viruses pose a potential risk to human health and are the focus of increasing scientific interest. To start gaining information about bat-transmitted viruses in Hungary, we tested multiple bat species for several virus groups between 2012 and 2013. Materials and Methods: Fecal samples were collected from bats across Hungary. We performed group-specific RT-PCR screening for astro-, calici-, corona-, lyssa-, othoreo-, paramyxo-, and rotaviruses. Positive samples were selected and sequenced for further phylogenetic analyses. Results: A total of 447 fecal samples, representing 24 European bat species were tested. Novel strains of astroviruses, coronaviruses, and caliciviruses were detected and analyzed phylogenetically. Out of the 447 tested samples, 40 (9%) bats were positive for at least one virus. Bat-transmitted astroviruses (BtAstV) were detected in eight species with a 6.93% detection rate (95% confidence interval [CI] 4.854, 9.571). Coronaviruses (BtCoV) were detected in seven bat species with a detection rate of 1.79% (95% CI 0.849, 3.348), whereas novel caliciviruses (BtCalV) were detected in three bat species with a detection rate of 0.67% (95% CI 0.189, 1.780). Phylogenetic analyses revealed a great diversity among astrovirus strains, whereas the Hungarian BtCoV strains clustered together with both alpha- and betacoronavirus strains from other European countries. One of the most intriguing findings of our investigation is the discovery of novel BtCalVs in Europe. The Hungarian BtCalV did not cluster with any of the calcivirus genera identified in the family so far. Conclusions: We have successfully confirmed BtCoVs in numerous bat species. Furthermore, we have described new bat species harboring BtAstVs in Europe and found new species of CalVs. Further long-term investigations involving more species are needed in the Central European region for a better understanding on the host specificity, seasonality, phylogenetic relationships, and the possible zoonotic potential of these newly described viruses

    Abstracts from the 10th C1-inhibitor deficiency workshop

    No full text
    corecore