14 research outputs found

    Orexin/hypocretin receptor chimaeras reveal structural features important for orexin peptide distinction

    Get PDF
    AbstractWe wanted to analyze the basis for the distinction between OX1 and OX2 orexin receptors by the known agonists, orexin-A, orexin-B and Ala11, d-Leu15-orexin-B, of which the latter two show some selectivity for OX2. For this, chimaeric OX1/OX2 and OX2/OX1 orexin receptors were generated. The receptors were transiently expressed in HEK-293 cells, and potencies of the agonists to elicit cytosolic Ca2+ elevation were measured. The results show that the N-terminal regions of the receptor are most important, and the exchange of the area from the C-terminal part of the transmembrane helix 2 to the transmembrane helix 4 is enough to lead to an almost total change of the receptor’s ligand profile

    Autocrine Endocannabinoid Signaling through CB 1 Receptors Potentiates OX 1 Orexin Receptor Signaling s

    Get PDF
    ABSTRACT It has been proposed that OX 1 orexin receptors and CB 1 cannabinoid receptors can form heteromeric complexes, which affect the trafficking of OX 1 receptors and potentiate OX 1 receptor signaling to extracellular signal-regulated kinase (ERK). We have recently shown that OX 1 receptor activity releases high levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), suggesting an alternative route for OX 1 -CB 1 receptor interaction in signaling, for instance, in retrograde synaptic transmission. In the current study, we set out to investigate this possibility utilizing recombinant Chinese hamster ovary K1 cells. 2-AG released from OX 1 receptor-expressing cells acted as a potent paracrine messenger stimulating ERK activity in neighboring CB 1 receptor-expressing cells. When OX 1 and CB 1 receptors were expressed in the same cells, OX 1 stimulation-induced ERK phosphorylation and activity were strongly potentiated. The potentiation but not the OX 1 response as such was fully abolished by specific inhibition of CB 1 receptors or the enzyme responsible for 2-AG generation, diacylglycerol lipase (DAGL). Although the results do not exclude the previously proposed OX 1 -CB 1 heteromerization, they nevertheless unequivocally identify DAGL-dependent 2-AG generation as the pivotal determinant of the OX 1 -CB 1 synergism and thus suggest a functional rather than a molecular interaction of OX 1 and CB 1 receptors

    Alpha-2 Adrenergic Receptors and Signal Transduction : Effector Output in Relation to G-Protein Coupling and Signalling Cross-Talk

    No full text
    The alpha-2 adrenergic receptor (α2-AR) subfamily includes three different subtypes, α2A-, α2B- and α2C-AR, all believed to exert their function through heterotrimeric Gi/o-proteins. The present study was undertaken in order to investigate subtype differences in terms of cellular response and to explore other potential signalling pathways of α2-ARs. Evidence is provided for a strong Gs-protein coupling capability of the α2B-AR, leading to stimulation of adenylyl cyclase (AC). The difference between the α2A- and α2B-AR subtypes, in this respect, was shown to be due to differences in the second intracellular loops of the receptor proteins. Substitution of the second loop in α2A-AR with the corresponding domain of α2B-AR enrolled the chimeric α2A/α2B receptor with functional α2B-AR properties. Dual Gi and Gs coupling can have different consequences for AC output. Using coexpression of receptors and G-proteins, it was shown that the ultimate cellular response of α2B-AR activation is largely dependent on the ratio of Gi- to Gs-protein amounts in the cell. Also Gi- and Go-proteins appear to have different regulatory influences on AC. Heterologous expression of AC2 together with Gi or Go and the α2A-AR resulted in receptor-mediated inhibition of protein kinase C-stimulated AC2 activity through Go, whereas activation of Gi potentiated the activity. α2-ARs mobilize Ca2+ in response to agonists in some cell types. This response was shown to depend on tonic purinergic receptor activity in transfected CHO cells. Elimination of the tonic receptor activity almost completely inhibited the Ca2+ response of α2-ARs. In conclusion, α2-ARs can couple to multiple G-proteins, including Gi, Go and Gs. The cellular response to α2-AR activation depends on which receptor subtype is expressed, which cellular signalling constituents are engaged (G-proteins and effectors), and the signalling status of the effectors (dormant or primed)

    Molecular Conversion of Muscarinic Acetylcholine Receptor M5 to Muscarinic Toxin 7 (MT7)-Binding Protein

    Get PDF
    Muscarinic toxin 7 (MT7) is a mamba venom peptide that binds selectively to the M1 muscarinic acetylcholine receptor. We have previously shown that the second (ECL2) and third (ECL3) extracellular loops of the M1 receptor are critically involved in binding the peptide. In this study we used a mutagenesis approach on the M5 subtype of the receptor family to find out if this possesses a similar structural architecture in terms of toxin binding as the M1 receptor. An M5 receptor construct (M5-E175Y184E474), mutated at the formerly deciphered critical residues on ECL2 and 3, gained the ability to bind MT7, but with rather low affinity as determined in a functional assay (apparent Ki = 24 nM; apparent Ki for M1 = 0.5 nM). After screening for different domains and residues, we found a specific residue (P179 to L in M5) in the middle portion of ECL2 that was necessary for high affinity binding of MT7 (M5-EL179YE, apparent Ki = 0.5 nM). Mutation of P179 to A confirmed a role for the leucine side chain in the binding of MT7. Together the results reveal new binding interactions between receptors and the MT7 peptide and strengthen the hypothesis that ECL2 sequence is of utmost importance for MT binding to muscarinic receptors

    Autocrine endocannabinoid signaling through CB 1 receptors potentiates OX 1 orexin receptor signaling MOL #80523 2 Running title: CB 1 receptor signaling potentiates OX 1 receptor signaling

    No full text
    Although the results do not exclude the previously proposed OX 1 -CB 1 heteromerization, they nevertheless unequivocally identify diacylglycerol lipase-dependent 2-AG generation as the pivotal determinant of the OX 1 -CB 1 synergism and thus suggest rather a functional than a molecular interaction of OX 1 and CB 1 receptors

    Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer.

    No full text
    Reactive oxygen species, specifically hydrogen peroxide (H(2)O(2)), have a significant role in hormone production in thyroid tissue. Although recent studies have demonstrated that dual oxidases are responsible for the H(2)O(2) synthesis needed in thyroid hormone production, our data suggest a pivotal role for superoxide dismutase 3 (SOD3) as a major H(2)O(2)-producing enzyme. According to our results, Sod3 is highly expressed in normal thyroid, and becomes even more abundant in rat goiter models. We showed TSH-stimulated expression of Sod3 via phospholipase C-Ca(2+) and cAMP-protein kinase A, a pathway that might be disrupted in thyroid cancer. In line with this finding, we demonstrated an oncogene-dependent decrease in Sod3 mRNA expression synthesis in thyroid cancer cell models that corresponded to a similar decrease in clinical patient samples, suggesting that SOD3 could be used as a differentiation marker in thyroid cancer. Finally, the functional analysis in thyroid models indicated a moderate role for SOD3 in regulating normal thyroid cell proliferation being in line with our previous observations.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore