42 research outputs found

    Transport, Magnetic and Vibrational Properties of Chemically Exfoliated Few Layer Graphene

    Get PDF
    We study the vibrational, magnetic and transport properties of Few Layer Graphene (FLG) using Raman and electron spin resonance spectroscopy and microwave conductivity measurements. FLG samples were produced using wet chemical exfoliation with different post-processing, namely ultrasound treatment, shear mixing, and magnetic stirring. Raman spectroscopy shows a low intensity D mode which attests a high sample quality. The G mode is present at 15801580 cm1^{-1} as expected for graphene. The 2D mode consists of 2 components with varying intensities among the different samples. This is assigned to the presence of single and few layer graphene in the samples. ESR spectroscopy shows a main line in all types of materials with a width of about 11 mT and and a gg-factor in the range of 2.0052.0102.005-2.010. Paramagnetic defect centers with a uniaxial gg-factor anisotropy are identified, which shows that these are related to the local sp2^2 bonds of the material. All kinds of investigated FLGs have a temperature dependent resistance which is compatible with a small gap semiconductor. The difference in resistance is related to the different grain size of the samples

    Multipurpose High Frequency Electron Spin Resonance Spectrometer for Condensed Matter Research

    Full text link
    We describe a quasi-optical multifrequency ESR spectrometer operating in the 75-225 GHz range and optimized at 210 GHz for general use in condensed matter physics, chemistry and biology. The quasi-optical bridge detects the change of mm wave polarization at the ESR. A controllable reference arm maintains a mm wave bias at the detector. The attained sensitivity of 2x10^10 spin/G/(Hz)1/2, measured on a dilute Mn:MgO sample in a non-resonant probe head at 222.4 GHz and 300 K, is comparable to commercial high sensitive X band spectrometers. The spectrometer has a Fabry-Perot resonator based probe head to measure aqueous solutions, and a probe head to measure magnetic field angular dependence of single crystals. The spectrometer is robust and easy to use and may be operated by undergraduate students. Its performance is demonstrated by examples from various fields of condensed matter physics.Comment: submitted to Journal of Magnetic Resonanc

    Role of the antisymmetric exchange in quantum spin liquids

    Get PDF
    The quantum critical state of organic quantum spin liquids (QSL) exhibits large sensitivity even to weak perturbations. For example, the antisymmetric exchange, the Dzyaloshinskii-Moriya (DM) interaction, which is present in all spin systems without inversion symmetry, could result in a phase transition from the quantum critical phase to an antiferromagnetic phase already at moderate magnetic fields. Using the combination of multi-frequency Electron Spin Resonance spectroscopy (ESR) in the 1-500 GHz frequency range and muon spin rotation (mSR), we studied the influence of the DM interaction in two-dimensional and quasi-one-dimensional organic QSL candidates. In the triangular lattice QSL, k-(ET)2Ag2(CN)3 (J’/J=0.94, J=175 K), our ESR measurements found a static staggered moment of 6×10-3 mB at T=1.5 K and at B=15 T [1]. The magnetic field dependence of the ESR linewidth, which measures the spectral density of the antiferromagnetic fluctuations, proves that this staggered moment stems from the DM interaction (DM0=4 K) in a perfectly crystalline two-dimensional structure. In a new quasi-one-dimensional QSL candidate, (EDT-TTF-CONH2)2+BABCO-, which is a weak Mott insulator with a distorted triangular lattice (J’/J=3, J=360 K), our combined ESR and mSR study confirmed the absence of magnetic ordering down to 20 mK [2]. This remarkable observation is partially attributed to a unique structural motif of the (EDT-TTF-CONH2)2+BABCO- salt. Here, the (EDT-TTF-CONH2)2+ conducting layers are separated by the highly disordered BABCO- molecular rotors. Importantly, despite the presence of a sizable DM interaction (DM0=0.6 K), the staggered moment is smaller than 4×10-4 mB at T=1.5 K and B=15 T. The magnetic field dependence of the ESR linewidth does not show the effect of the DM interaction. Instead, the linear dependence is indicative of the presence of fast spin fluctuations, which is supported by longitudinal-field mSR measurements that reveal the spin excitations to possess one-dimensional diffusive character. The quenching of the effect of the DM interaction is explained by the strong disorder introduced by the anion layer. Despite the fact that the magnitude of the DM interaction is 2 to 3 orders of magnitude weaker than the symmetric exchange, it can substantially alter the phase diagram of QSLs. Our work gives a novel explanation to the field-induced phase transitions, and it demonstrates that high-frequency ESR is a powerful technique to study the spin dynamics of QSLs

    Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene

    Full text link
    The chapter generalizes results on influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe electronic properties of graphene-admolecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. Applied technique allowed observation of possible metal-insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo-Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced in dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts against or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be nonmonotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.Comment: 16 pages, 10 figure

    Ultralong spin lifetime in light alkali atom doped graphene

    Full text link
    Today's great challenges of energy and informational technologies are addressed with a singular compound, the Li and Na doped few layer graphene. All what is impossible for graphite (homogeneous and high level Na doping), and unstable for single layer graphene, works very well for this structure. The transformation of the Raman G line to a Fano lineshape and the emergence of strong, metallic-like electron spin resonance (ESR) modes, attest the high level of graphene doping in liquid ammonia for both kinds of alkali atoms. The spin-relaxation time in our materials, deduced from the ESR line-width, is 6-8 ns, which is comparable to the longest values found in spin-transport experiments on ultrahigh mobility graphene flakes. This could qualify our material as promising candidate in spintronics devices. On the other hand, the successful sodium doping, this being a highly abundant metal, could be an encouraging alternative to lithium batteries.Comment: 10 pages, 5 figures+ Supplementary Material
    corecore