370 research outputs found

    Medical Polymer-Based Gene Therapy

    Get PDF

    Deleterious effects in reproduction and developmental immunity elicited by pulmonary iron oxide nanoparticles

    Get PDF
    With the extensive application of iron oxide nanoparticles (FeNPs), attention about their potential risks to human health is also rapidly raising, particularly in sensitive subgroups such as pregnant women and babies. In this study, we a single instilled intratracheally FeNPs (1, 2, and 4 mg/kg) to the male and female parent mice, mated, then assessed reproductive toxicity according to the modified OECD TG 421. During the pre-mating period (14 days), two female parent mice died at 4 mg/kg dose, and the body weight gain dose-dependently decreased in male and female parent mice exposed to FeNPs. Additionally, iron accumulation and the enhanced expression of MHC class II molecules were observed in the ovary and the testis of parent mice exposed to the highest dose of FeNPs, and the total sex ratio (male/female) of the offspring mice increased in the groups exposed to FeNPs. Following, we a single instilled intratracheally to their offspring mice with the same doses and evaluated the immunotoxic response on day 28. The increased mortality and significant hematological- and biochemical- changes were observed in offspring mice exposed at 4 mg/kg dose, especially in female mice. More interestingly, balance of the immune response was shifted to a different direction in male and female offspring mice. Taken together, we conclude that the NOAEL for reproductive and developmental toxicity of FeNPs may be lower than 2 mg/kg, and that female mice may show more sensitive response to FeNPs exposure than male mice. Furthermore, we suggest that further studies are necessary to identify causes of both the alteration in sex ratio of offspring mice and different immune response in male and female offspring mice.

    Impact of commercial cigarette smoke condensate on brain tissue co-cultured with astrocytes and blood-brain barrier endothelial cells

    Get PDF
    The purpose of the current study was to investigate the effect of two commercial cigarette smoke condensates (CCSC) on oxidative stress and cell cytotoxicity in human brain (T98G) or astrocytes (U-373 MG) in the presence of human brain microvascular endothelial cells (HBMEC). Cell viability of mono-culture of T98G or U-373 MG was markedly decreased in a concentration-dependent manner, and T98G was more susceptible than U-373 MG to CCSC exposure. Cytotoxicity was less prominent when T98G was co-cultured with HBMEC than when T98G was co-cultured with U-373 MG. Significant reduction in trans-epithelial electric resistance (TEER), a biomarker of cellular integrity was noted in HBMEC co-cultured with T98G (HBMEC-T98G co-culture) and U-373 MG co-cultured with T98G (U-373 MG-T98G co-culture) after 24 or 48 hr CCSC exposure, respectively. TEER value of U-373 MG co-cultured with T98G (79-84%) was higher than HBMEC co-cultured with T98G (62-63%) within 120-hr incubation with CCSC. Reactive oxygen species (ROS) generated by CCSC in mono-culture of T98G and U-373 MG reached highest levels at 4 and 16 mg/ml, respectively. ROS production by T98G fell when co-cultured with HBMEC or U-373MG. These findings suggest that adverse consequences of CCSC treatment on brain cells may be protected by blood-brain barrier or astrocytes, but with chronic exposure toxicity may be worsened due to destruction of cellular integrity.

    Suppression of tobacco carcinogen-induced lung tumorigenesis by aerosol-delivered glycerol propoxylate triacrylate-spermine copolymer/short hairpin Rab25 rna complexes in female A/J mice

    Get PDF
    Background: Rab25, a member of Rab family of small guanosine triphosphatase, is associated with progression of various types of human cancers, including lung cancer, the leading cause of cancer-associated deaths around the globe. Methods: In this study, we report the gene therapeutic effect of short hairpin Rab25 RNA (shRab25) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Initially, mice (6 weeks old) were injected with single dose of NNK (2mg/0.1mL saline/mouse) by intraperitoneal injection to induce the tumor. Eight weeks later, shRab25 was complexed with glycerol propoxylate triacrylate-spermine (GPT-SPE) copolymer and delivered into tobacco-induced lung cancer models through a nose-only inhalation system twice a week for 2 months. Results: GPT-SPE/shRab25 largely decreased the tobacco-induced tumor numbers and tumor volume in the lungs compared to GPT-SPE- or GPT-SPE/shScr-delivered groups. Remarkably, aerosol-delivered GPT-SPE/shRab25 significantly decreased the expression level of Rab25 and other prominent apoptosis-related proteins in female A/J mice. The apoptosis in these mice was determined by detecting the expression level of Bcl-2, proliferating cell nuclear antigen, Bax, and further confirmed by TUNEL assay. Conclusions: Our results strongly confirm the tumorigenic role of Rab25 in tobacco carcinogen-induced lung cancer and hence demonstrate aerosol delivery of shRab25 as a therapeutic target for lung cancer treatment.

    The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders

    Get PDF
    This study used an integrated approach to investigate the effects of Gymnema sylvestre (GS) extract as a functional dietary supplement with a high-fat diet. This approach examined insulin resistance, the dysfunction of adipose tissue, and liver steatosis. Male C57BL/6J mice were fed a normal chow or high-fat diet (HFD) for the acute and chronic study, in addition to GS in different doses (100, 250 and 500 mg/kg body weight). Their body composition changes, serum lipid and glucose parameters, adipose and liver tissue histology, and gene expression were measured. It was found that GS significantly suppressed the increase of body weight, serum levels of lipid, insulin and leptin, and adipose tissue, and liver inflammation. GS also demonstrated hypoglycemic effects due to the amylase inhibition activity. Our results support the existence of a relationship between the HFD induced insulin resistance, adipose dysfunction and liver steatosis. In conclusion, GS works as a functional dietary supplement with preventative effects against metabolic disorder.

    Methodological Considerations of Electron Spin Resonance Spin Trapping Techniques for Measuring Reactive Oxygen Species generated from metal oxide nanomaterials

    Get PDF
    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials

    Suppression of lung cancer progression by biocompatible glycerol triacrylate–spermine-mediated delivery of shAkt1

    Get PDF
    Background: Polyethylenimine (PEI)-based nonviral gene-delivery systems are commonly employed because of their high transfection efficiency. However, the toxic nature of PEI is a significant obstacle in clinical gene therapy. In this study, we developed biocompatible glycerol triacrylate-spermine (GT-SPE) polyspermine as a nanosized gene carrier for potential lung cancer gene therapy. Methods: The GT-SPE was synthesized using the Michael addition reaction between GT and SPE. The molecular weight was characterized using gel permeability chromatography multiangle laser light scattering and the composition of the polymer was analyzed using proton nuclear magnetic resonance. Results: The GT-SPE successfully protected the DNA from nucleases. The average particle size of the GT-SPE was 121 nm with a zeta potential of +23.45 mV. The GT-SPE was found to be less toxic than PEI for various cell lines, as well as for a murine model. Finally, our results showed that the GT-SPE/small hairpin Akt1 (shAkt1) complex suppressed lung tumorigenesis in a K-ras(LA1) lung cancer mice model by inducing apoptosis through the Akt signaling pathway and cell cycle arrest. Aerosol delivered GT-SPE/shAkt1, which reduced matrix metalloproteinase-9 activity and suppressed the expression levels of proliferating cell nuclear antigen, as well as vascular endothelial growth factors and CD31, which are known proliferation and angiogenesis markers, respectively. Conclusion: Our data suggest that GT-SPE may be a candidate for short hairpin-shaped RNA-based aerosol lung cancer gene therapy

    S6 kinase 1 plays a key role in mitochondrial morphology and cellular energy flow

    Get PDF
    Mitochondrial morphology, which is associated with changes in metabolism, cell cycle, cell development and cell death, is tightly regulated by the balance between fusion and fission. In this study, we found that S6 kinase 1 (S6K1) contributes to mitochondrial dynamics, homeostasis and function. Mouse embryo fibroblasts lacking S6K1 (S6K1 KO MEFs) exhibited more fragmented mitochondria and a higher level of Dynamin related protein 1 (Drp1) and active Drp1 (pS616) in both whole cell extracts and mitochondria' fraction. In addition, there was no evidence for autophagy and mitophagy induction in S6K1 depleted cells. Glycolysis and mitochondrial respiratory activity was higher in S6K1-KO MEFs, whereas OxPhos ATP production was not altered. However, inhibition of Drp1 by Mdivi1 (Drp1 inhibitor) resulted in higher OxPhos ATP production and lower mitochondrial membrane potential. Taken together the depletion of S6K1 increased Drpl-mediated fission, leading to the enhancement of glycolysis. The fission form of mitochondria resulted in lower yield for OxPhos ATP production as well as in higher mitochondrial membrane potential. Thus, these results have suggested a potential role of S6K1 in energy metabolism by modulating mitochondrial respiratory capacity and mitochondrial morphology.
    corecore