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1. Introduction  

Gene therapy provides great opportunities for treatment of diseases resulting from genetic 
disorders, infections, and cancer (Park, et al., 2006). Gene therapy has also been regarded as 
a suitable substitute for conventional protein therapy, since it can overcome inherent 
problems associated with administration of protein drugs in terms of bioavailability, 
systemic toxicity, in vivo clearance rate, and manufacturing cost (Ledley, 1996). Gene 
therapy refers to local or systemic administration of a nucleic acid construct capable of 
prevention, treatment, and even cure of disease through change of expression of genes 
responsible for the pathological condition (Bhavsar & Amiji, 2007). In theory, gene therapy 
is a simple concept that holds great promise as a cure for disease. However, in practice, 
considerable obstacles need to be overcome, including problems associated with safe and 
efficient gene delivery and stable gene expression. Many problems need to be solved in 
development of any gene therapy approach, including definition of cells that constitute the 
target, entry of DNA into those cells, expression of useful levels of gene product over an 
appropriate time period, and avoidance of the almost inevitable response of the host to the 
introduced materials, and so on (Grosshans, 2000, Smith, 1995).  
Current gene therapy consists of two key factors: a gene that encodes a specific therapeutic 
protein, and a gene delivery system that controls delivery of gene expression plasmids to 
specific locations within the body (Mahato, et al., 1999, Park, et al., 2006). Due to several 
problems, including their instability in body fluids, non-specificity to target cells, 
degradation by enzymes, and low transfection efficiency, the lack of effective vectors is a 
major barrier to progress in gene therapy. Therefore, the ideal gene delivery method will be 
capable of high efficiency transfection of genes to a specific cell type; delivery to the nucleus, 
where it will become integrated into the host genome in a non-mutagenic fashion and be 
expressed or regulated; efficient transduction of cells, independent of the mitotic potential of 
the recipient; be non-infectious, non-toxic, and non-immunogenic; and be easy to 
manufacture and apply clinically (Chaum & Hatton, 2002). 
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Vehicles for gene delivery can be divided into two major groups: viral and non-viral vectors. 
Although such viral vectors have been commonly employed in clinical trials due to their high 
transfection efficiency, compared with non-viral vectors (Quong & Neufeld, 1998), their 
application to the human body is often frustrated by immunogenicity, potential infectivity, 
complicated production, and inflammation (Smith, 1995). Non-viral vectors involving use of 
cationic polymer and cationic lipid based carriers continue to enjoy a high profile due to the 
advantages offered by these systems, including safety, lower immunogenicity, and the ability 
to transfer larger DNA molecules, when compared with viruses (Anderson, 1998, Brown, et al., 
2001). Previous efforts have focused primarily on cationic liposomes, such as N-[1-(2,3-
dioleyloxy)propyl]-N,N,N-trimethyl ammonium chloride (DOTMA) (Felgner, et al., 1987), N-
[1-(2,3-dioleoyloxy) propyl]-N,N,N-trimethyl ammonium ethyl sulphate (DOTAP) (Alexander 
& Akhurst, 1995), dimethylaminoethane-carbamoyl cholesterol (DC-Chol) and/or dioleoyl 
phosphatidylethanolamine (DOPE) (Farhood, et al., 1995) which incorporate with DNA and 
are transferred effectively into cell membranes. However, the major limitation of liposomes is 
their fast elimination from the bloodstream and localization in the reticuloendothelial system, 
primarily Kupfer cells of liver (Klibanov, et al., 1990). In addition, DNA/liposome complexes 
have been restricted due to cellular toxicity. Cellular changes, including cell shrinkage, 
reduced number of mitoses, and vacuolization of the cytoplasm (Friend, et al., 1996, 
Lappalainen, et al., 1994) and consequently leading to cell death via the apoptosis pathway, 
caused by lipoplexes, already been reported (Nguyen, et al., 2007). An alternative approach to 
development of non-viral vectors has been proposed for cationic polymers. In general, cationic 
polymers are widely accepted because of their ability for efficient condensation of DNA and 
interaction with cells due to the charge interaction between positively charged polymer/DNA 
complexes and negatively charged cellular membranes. Polymer/DNA complexes are more 
stable than those involving cationic lipids. In addition, they protect DNA against nuclease 
degradation (Jiang, et al., 2007, Jiang, et al., 2009).  
Therefore, the objective of this chapter was to summarize the use of medical polymers, such 
as cyclodextrin, chitosan, polyethylenimine, poly(┚-amino ester)s (PAEs), and their 
derivatives as non-viral vectors in the area of gene therapy. 

2. Medical polymer-based gene therapy 

2.1 Cyclodextrin  
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides composed of (1-4)-
linked glucose units arising from enzymatic degradation of starch, which have been 
approved by the FDA for use as food additives (Mellet, et al., 2011). CDs comprised of 6, 7, 
and 8 glucose units are called ┙-, ┚-, and ┛-CDs, respectively. Table. 1 shows the chemical 
structure and properties of ┙-, ┚-, and ┛-CDs.  
They feature a basket-shaped topology in which glucose hydroxyls orient to the outer space 
flanking the upper and lower rims, while methinic protons (H-5 and H-3), which point to 
the inner cavity cup-shaped cyclic oligomers of glucose, can form inclusion complexes with 
small, hydrophobic molecules (Forrest, et al., 2005). Due to their unique capability for 
formation of inclusion complexes in inner cavities, as well as many other favourable 
physicochemical and biological properties, natural CDs, and their derivatives have been 
applied in both drug delivery systems (Loftsson, et al., 2005, Uekama, et al., 1998) and gene 
delivery systems (Challa, et al., 2005, Dass, 2002, Redenti, et al., 2001).  
The capability of CDs and their derivatives to interact with nucleotides is of great 
importance for exploitation of their properties of increasing resistance to nucleases as well 
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as delivery of genes. CDs can improve cellular uptake of genes and can also delay their 
degradation by increasing their stability against endonucleases. Zhao et al. reported that 
CDs can increase the cellular uptake of phosphorothioate ODNs (Zhao, et al., 1995). Cellular 
uptake of 35S- and fluorescence-labeled antisense agents has been studied in human T cell 
leukemia cell lines (H9, CEM, or Molt-3) in the presence of CDs, including ┙-, ┚-, ┛CD, 
methyl-┚CD, trimethyl sulfated ┚CD, HP┛CD, HP┚CD, hydroxyethyl ┚CD (HECD), 
trimethyl, sulfated ┚CD, and a mixture of various HP┚CDs. Cellular uptake was found to be 
concentration and time dependent in the presence of CDs, and up to a two- and three-fold 
increase in cellular uptake was observed within 48 h. Interaction between ┚CD and cellular 
cholesterol in living cells was well reviewed by Zidovetzki et al. (Zidovetzki & Levitan, 2007). 
CDs can solve many of the problems associated with in vivo delivery of genetic materials, such 
as their limited ability to extravasate from the blood stream and traverse cellular membranes, 
high degree of susceptibility to endonucleases with potential toxicity of their breakdown 
products, polyanionic nature leading to nonspecific interactions with extracellular and 
intracellular cationic molecules, and potential immunogenicity (Challa, et al., 2005). For further 
efficient gene delivery, CDs were conjugated with cationic polymers. The most important 
feature of the CD-containing cationic polymer gene delivery system is that formation of 
polyplexes between polymers and DNA can be further modified by formation of inclusion 
complexes, since there are a large number of CD moieties (Davis & Brewster, 2004, Pack, et al., 
2005). The first example of cationic polymers containing ┚-CD in the polymer backbone for 
gene delivery was reported by Davis and co-workers (Gonzalez, et al., 1999). β-CD containing 
cationic polymers efficiently condensed DNA to small particles and showed nontoxic and high 
gene transfection efficiency. The same group has developed a set of such CD-containing 
polymers and studied the structural effects of the polymers on gene delivery (Popielarski, et 
al., 2003, Reineke & Davis, 2003, 2003). In general, the CD-containing cationic polymers 
showed lower cytotoxicity and efficient gene transfection in vitro.  
 

Chemical 
structure 

 
Cavity 

diameter (Å) 
4.7 – 5.3 6.0 – 6.5 7.5 – 8.3 

Molecular 
weight (Da) 

972 1135 1297 

Solubility 
(g/100 mL) 

14.5 1.85 23.2 

Table 1. Chemical structures and characterizations of CDs. CDs comprised of 6, 7, and 8 
glucose units are called ┙-, ┚-, and ┛-CDs, respectively. 

The Uekama group synthesized dendrimer conjugates with ┙-, ┚-, and ┛-CDs [Fig. 1], in 
anticipation of the following synergic effect; i.e., (1) dendrimer has the ability to complex 
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with plasmid DNA (pDNA) and to enhance cellular uptake of pDNA and (2) CDs have a 
disruptive effect on biological membranes by complexation with membrane constituents, 
such as phospholipids and cholesterols (Arima, et al., 2001). Dendrimer-conjugated CD 
(CDE) provided the greatest transfection activity (approximately 100 times higher than 
those of dendrimer alone and the physical mixture of dendrimer and ┙-CD) in NIH3T3 
fibroblasts and RAW264.7 macrophage cells (Arima, et al., 2001).  
   

              

Fig. 1. Chemical structure of dendrimer-conjugated CD (left) and transfection efficiency of 
the complexes of pDNA/dendrimer or pDNA/CDE conjugates complexes at various charge 
ratios (right). [Source from Ref. (Arima, et al., 2001)]. 

They also studied the effect of dendrimer structure on gene transfection efficiency by 
preparation of CDEs with different dendrimer generations (Kihara, et al., 2002). The 
generation3 (G3) CDE showed the highest gene expression levels. More recently, the same 
group developed a lactose moiety-bearing CDE (Lac-┙-CDE) for hepatocyte targeting 
(Arima, et al., 2010). Lac-┙-CDE provided higher gene transfer activity than jetPEITM-

Hepatocyte to hepatocytes with significantly fewer changes of blood chemistry values 12 h 
after intravenous administration in mice. 
As shown in Fig. 2, Pun et al. synthesized linear and branched poly(ethylenimines) (PEIs) 
grafted with ┚-CD (CD-lPEI and CD-bPEI, respectively) by reaction of a mono-tosylated 
cyclodextrin with PEI amines and evaluated gene delivery ability as non-viral gene delivery 
agents in vitro and in vivo (Pun, et al., 2004).  
 

      

Fig. 2. (a) Synthesis of ┚-CD-bPEI. (b) Synthesis of ┚-CD-lPEI. [Source from Ref. (Pun, et  
al., 2004)].  
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Transfection efficiency of the polymers was impaired as cyclodextrin grafting increased, and 
toxicity was affected by cyclodextrin grafting due to the increasing polymer solubility, by 
capping primary amines, or by reducing polycation binding affinity [Fig. 3].  
 

     

Fig. 3. Comparison of transgene expression from PEI and CD-PEI polymers in the presence 
or absence of 0.1 mM chloroquine (left) and effect of cyclodextrin grafting on CD-bPEI 
toxicity to PC3 cells (right). [Source from Ref. (Pun, et al., 2004)]. 

Recently, Huang et al. also used CDs for crosslinking of low MW branched PEI (MW 600) in 
order to form high MW cationic polymers (average MW 61K), which displayed lower 
cytotoxicity and high gene transfection in cultured cells (Huang, et al., 2006). As shown in 
Fig. 4, a series of new cationic star polymers were also synthesized by conjugation of 
multiple oligoethylenimine (OEI) arms onto an ┙-CD core as non-viral gene delivery vectors 
(Yang, et al., 2007).  
 

 

Fig. 4. Synthesis procedures and the structures of ┙-CD-OEI star polymers. [Source from 
Ref. (Yang, et al., 2007)]. 
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All of the ┙-CD-OEI star polymers inhibited migration of pDNA on agarose gel through 
formation of complexes with pDNA, and the complexes formed nanoparticles with sizes 
ranging from 100-200 nm at N/P ratios of 8 or higher. Star polymers displayed much lower 
in vitro cytotoxicity than that of branched PEI 25 kD. ┙-CD-OEI star polymers showed 
excellent gene transfection efficiency in HEK293 and Cos7 cells. In general, transfection 
efficiency increased with an increase in OEI arm length. Star polymers with longer and 
branched OEI arms showed higher transfection efficiency. ┙-CD-OEI star polymers with 
different OEI arms have shown promise as new non-viral gene delivery vectors with low 
cytotoxicity and high gene transfection efficiency for use in future gene therapy 
applications. 
In summary, CD-conjugated polymeric gene carriers showed enhanced transfection 
efficiency and reduced cytotoxicity, suggesting that CD is a material of potential interest for 
use in non-viral gene therapy, because these CD-conjugated polymeric gene delivery 
systems have been evaluated extensively in animal studies as well as clinical trials.  

2.2 Chitosan  
Chitosan [Fig. 5], a (1→4) 2-amino-2-deoxy-┚-D-glucan, is a linear cationic polysaccharide 

derived by partial alkaline deacetylation of chitin, a polymer abundant in nature. The 
backbone of chitosan consists of two subunits, D-glucosamine and N-acetyl-D-glucosamine 
(Muzzarelli, 1997). It is a biocompatible, biodegradable polycationic polymer, which has 
minimum immunogenicity and low cytotoxicity (Mansouri, et al., 2004). Therefore, chitosan 
and chitosan derivatives may represent potentially safe cationic carriers for use in gene 
delivery.  
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Fig. 5. Chemical structure of chitosan. 

Factors including the degree of deacetylation, molecular weight, and charge of chitosan, and 
the media pH are important in determination of the transfection efficiency of polyplexes 
containing chitosan and DNA (Huang, et al., 2005, Ishii, et al., 2001, Lavertu, et al., 2006). 
The increased degree of deacetylation resulted in an increased level of DNA binding ability, 
and high transgene expression due to higher charge density along the chain (Kiang, et al., 
2004, Lavertu, et al., 2006, Saranya, et al., 2011). The effect of the molecular weight of 
chitosan on complex formulation with DNA can be attributed to the chain entanglement 
effect (Kiang, et al., 2004). Chain entanglement contributes less to complex formulation as 
the molecular weight of chitosan decreases. The high molecular weight of chitosan resulted 
in easier entanglement of free DNA once the initial electrostatic interaction had occurred 
(Kiang, et al., 2004). Huang et al. reported that low molecular weight chitosan was less 
efficient at retaining DNA upon dilution, and, consequentially, less capable of protecting 
condensed DNA from degradation by DNase and serum components, and resulted in low 
transfection efficiency (Huang, et al., 2005). At acidic pH, below 5.5 or so, the primary 
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amines in chitosan become positively charged due to the pKa value of chitosan around 6.3-
6.4 (Li, et al., 1996). At this acidic pH, the primary amine groups are protonated, resulting in 
a cationic polymer of high charge density, which can form stable complexes with plasmid 
DNA, protecting DNA from nuclease degradation (Mao, et al., 2001).  
N,N,N-trimethyl chitosan chloride (TMC) was synthesized in order to induce an increase of 
charge density and solubility of chitosan at physiological pH. TMC induced more effective 
condensation of DNA at physiological pH, compared with chitosan, and the transfection 
efficiency of TMC/DNA complex showed a 30-fold increase over that of chitosan/DNA 
(Thanou, et al., 2002). Of particular interest, the presence of fetal calf serum (FCS) did not 
affect the transfection efficiency of the chitoplexes, whereas the transfection efficiency of 
DOTAP–DNA complexes was decreased. Cells remained approximately 100% viable in the 
presence of chitosan oligomers, whereas viability of DOTAP treated cells decreased to about 
50% in both cell lines (Thanou, et al., 2002). In addition, folate conjugated TMC (folate-TMC) 
was recently studied as a target gene delivery carrier (Zheng, et al., 2009). Transfection 
efficiency of folate-TMC/pDNA complexes in KB cells and SKOV3 cells (folate receptor 
over-expressing cell lines) increased with increasing N/P ratio and was enhanced up to 1.6-
fold and 1.4-fold, compared with that of TMC/pDNA complexes; however, no significant 
difference was observed between transfection efficiencies of the two complexes in A549 cells 
and NIH/3T3 cells (folate receptor deficient cell lines), indicating that the increase in 
transfection efficiencies of folate-TMC/pDNA complexes were attributed to folate receptor 
mediated endocytosis (Zheng, et al., 2009). 
PEGylation of proteins, drugs, and liposomes has been proven to be an effective approach in 
extending circulation in the blood stream (Patel, 1992). Therefore, in order to reduce the 
aggregation of complexes and increase circulation time, Jiang et al. synthesized and 
characterized chitosan-g-PEG [Fig. 6] as a gene carrier (Jiang, et al., 2006).   
 

   

Fig. 6. Sythesis of chitosan-g-PEG polymers (left) and luciferase expression in rat liver after 
infusion of the complexes from common bile duct (right). [Source from Ref. (Jiang, et al., 
2006)]. 

PEG grafting to chitosan efficiently shields the positive charge on the surface of 
chitosan/DNA complexes, improving particle stability in bile and serum; therefore, higher 
transfection efficiency was observed after infusion of the complexes through the bile duct 
[Fig. 6]. Chitosan-g-PEG mediated 3-fold higher luciferase expression in the liver than 
unmodified chitosan following intrabiliary infusion. Chitosan-g-PEG also exhibited slightly 
lower acute toxicity to the liver than chitosan. 
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Although chitosan showed good properties as a non-viral gene carrier, low transfection 
efficiency and low cell specificity of chitosan need to be overcome for clinical trials. Many 
research studies have been conducted for enhancement of transfection efficiency, such as pH-
sensitive modification (Jiang, et al., 2007, Jones, et al., 2003, Kim, et al., 2003, Wong, et al., 2006), 
temperature-sensitive modification (Cho, et al., 2004, Dang, et al., 2006, Sun, et al., 2005), 
specific target ligand modification (Hashimoto, et al., 2006, Kim, et al., 2004, Kim, et al., 2006, 
Mansouri, et al., 2006, Wu & Wu, 1998, Zhang, et al., 2006) and so on. Among the chemical 
modifications of chitosan, PEI grafted chitosan showed some benefit due to high transfection 
efficiency. Wong et al. prepared PEI-graft-chitosan [Fig. 7] through cationic polymerization of 
aziridine in the presence of water-soluble oligo-chitosan (Wong, et al., 2006).  
 

       

Fig. 7. Preparation of PEI-g-chitosan (left) and in vivo transfection efficiency of the 
complexes of PEI-g-chitosan/DNA in comparison with that of PEI (25 kDa) and chitosan 
after administration into common bile duct in rat liver (right). [Source from Ref. (Wong, et 
al., 2006)]. 

Results indicated that PEI-g-chitosan had a lower cytotoxicity than PEI 25K and PEI-g-

chitosan showed higher transfection efficiency than PEI 25K both in vitro and in vivo. In 

addition, improved biocompatibility and long-term safety will be expected for PEI-g-

chitosan due to the degradable chitosan main chain and short PEI side chains.  

Wong et al. synthesized PEI-graft-chitosan using water-soluble chitosan; however, 

commercial chitosan is insoluble at neutral and alkaline pH values due to a weak base with 

a pKa value of the D-glucosamine residue of about 6.2-7.0. Using commercial chitosan, Cho’s 

group synthesized a chitosan-g-PEI copolymer [Fig. 8] by an imine reaction between 

periodate-oxidized chitosan and an amine group of PEI (Jiang, et al., 2007).  

In addition, the same group developed specific ligand-conjugated chitosan-g-PEI, such as 

galactosylated- (Jiang, et al., 2007), mannosylated- (Jiang, et al., 2009), and folate-conjugated 

(Jiang, et al., 2009). The specific ligand-conjugated chitosan-g-PEI showed low cytotoxicity 

and high transfection efficiency with specific cell targeting.   

In summary, the transfection efficiency was dependent on the degree of deacetylation, 

molecular weight of the chitosan, and medium pH. Also, specific ligand-conjugation will 

increase the transfection efficiency depending on the targeting ability of the ligands. A 

number of in vitro and in vivo studies have shown that modified-chitosan is a suitable 

material for use in efficient non-viral gene therapy.  
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Fig. 8. Proposed reaction scheme for synthesis of CHI-g-PEI. [Source from Ref. (Jiang, et al., 
2007)]. 

Similarly, according to Wong’s results, the chitosan-g-PEI copolymer showed higher 
transfection efficiency and lower cytotoxicity than PEI 25K due to the buffering capacity of 
low moleculer weight PEI and biocompatible chitosan [Fig. 9].  
 

       

Fig. 9. Cytotoxicity of copolymer at various concentrations in different cell lines. (a) 293T, (b) 
HeLa and (c) HepG2 (left) and transfection efficiency of copolymer/DNA (pGL3-control) 
complex at various N/P ratios and in various cell lines. (a) 293T, (b) HeLa and (c) HepG2 
(right). [Source from Ref. (Jiang, et al., 2007)]. 
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2.3 Polyethylenimine (PEI) 
PEI has received much attention due to its high transfection efficiency. In 1995, Behr’s group 

made the first use of this polymer for delivery of DNA and oligonucleotides (Boussif, et al., 

1995). As shown in Fig. 10, PEI exists in two principal forms, branched and linear, with a 

wide range of molecular weights (Lungwitz, et al., 2005).  

 

 

Fig. 10. Chemical structures of branched and linear PEI. 

It is widely accepted that the high transfection ability of PEI is due to its high buffering 

capacity over a broad pH, which is called “the proton sponge effect” (Akinc, et al., 2005). In 

addition, the high content of primary amino groups enables chemical coupling of targeting 

moieties or intracellular active components; high density of positive charges in the molecule 

allows for a tight compaction of nucleic acids. However, high molecular weight of PEI 

shows high cytotoxicity, and when further decreasing the molecular weight, both cellular 

toxicity and transfection efficiency are decreased (Godbey, et al., 2001, Kunath, et al., 2003). 

One way to reduce toxicity of PEI is to reduce or mask the surface charge by attachment of 

vesicles with hydrophilic molecules, such as PEG. PEG chains of different length were used 

for modification of low-molecular weight PEIs (2 kDa), as well as high-molecular weight 

PEIs, such as the branched PEI (b-PEI) of 25 kDa [Fig. 11] (Petersen, et al., 2002) and the 

linear PEI (L-PEI) of 22 kDa (Kichler, et al., 2002). One beneficial effect of PEGylation is that 

PEG-PEI conjugates are less cytotoxic than non-modified polymers. 

 

  

Fig. 11. Synthesis of bPEI-g-PEG copolymers (left) and zeta-potential of plasmid DNA 
complexes with PEI 25 kDa and bPEI-g-PEG block copolymers at different ionic strength 
and at different N/P ratios (right). [Source from Ref. (Petersen, et al., 2002)]. 
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In all of the studies, covalent modification of PEI with PEG reduced the positive surface 
charge (zeta-potential) of the polyplexes, whereas it only marginally affected their size. 
However, PEGylation also reduces the DNA-binding capacity of the polymer and sterically 
hinders interactions of the polyplexes with the target cells. Therefore, in order to increase its 
usefulness, stealth technology must be combined with the use of ligands that allow specific 
cell targeting. Different types of ligands, such as sugar residues, peptides, proteins, and 
antibodies have been used for targeting of PEGylated PEI/DNA complexes [Table 2]. 
   

PEGylated PEI 

Ligand References 

Galactose (Sagara & Kim, 2002) 

Folate (Benns, et al., 2002) 

Transferrin (Kursa, et al., 2003) 

Epidermal growth factor (Blessing, et al., 2001) 

Table 2. Specific cell-targeting ligands conjugated with PEG-PEI. 

Specific cell-targeting ligand-conjugated PEG-PEI showed low cytotoxicity and high 
transfection efficiency with specific cell targeting ability.  
In summary, PEI is one of the successful and widely used gene delivery polymers, which 

has become the gold standard of non-viral gene delivery due to its high transfection 

efficiency. However, concerns over the cytotoxicity of PEI have to be solved for clinical 

trials. Cytotoxicity of PEI is dependent on its molecular weight; a lower molecular weight 

PEI has a lower cytotoxicity. Therefore, it is an attractive strategy by combination of lower 

molecular weight of PEI and biocompatible polymers as gene vectors for reduction of the 

toxicity of PEI. Also, similar to other cationic gene carriers, specific ligand-conjugation will 

be a way to increase  transfection efficiency with specific cell-targeting.  

2.4 Poly(β-amino ester)s (PAEs) 
PAEs are one of the biodegradable cationic gene carriers. Biodegradable cationic PAEs are 

of interest both from the standpoint of mitigating the toxicity of conventional materials as 

well as a potential means through which to effect the timely release of DNA inside 

transfected cells (Lim, et al., 2000, Lim, et al., 2002, Luo & Saltzman, 2000). The Langer 

group has been particularly interested in PAEs as gene carriers, as they are easily 

synthesized via conjugate addition of either primary or bis(secondary) amine to diacrylate 

compounds, as shown in Fig. 12.   

The Langer group reported a parallel approach suitable for synthesis of hundreds to 

thousands of structurally unique PAEs and application of these libraries to rapid and high 

throughput identification of new gene delivery agents and structure-function trends (Lynn, et 

al., 2001). The advantage of combinatorial chemistry and automated highthroughput synthesis 

is that it has revolutionized modern drug discovery by rapid synthesis and evaluation with 

greater precision. As shown in Fig. 13, 140 different PAEs (the set of 7 diacrylate monomers 

and 20 amine-based monomers) were synthesized as a screening library. Most of the PAEs 

showed low transfection efficiencies, compared with Lipofectamine 2000, a commercially 

available lipid-based vector system. However, B14 and G5 yielded higher gene transfection 

efficiencies. In particular, B14 showed higer transfection efficiency, compared with 
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Lipofectamine 2000, due to the high endosomal pH buffering capacity, similar to that of other 

imidazole-substituted polymers (Benns, et al., 2000, Pack, et al., 2000), suggesting that polymer 

B14 may be the more promising polymer as a gene delivery carrier.  
 

 

Fig. 12. Synthesis scheme of PAEs. 

 

    

[Source from Ref. (Zugates, et al., 2006)]. 

Fig. 13. Diacrylate (A-G) and amine (1-20) monomers chosen for the synthesis of an initial 
screening library (left) and transfection data as a function of structure for an assay 
employing pCMV-Luc (600 ng/well, DNA/polymer = 1:20, right). [Source from Ref. (Lynn, 
et al., 2001)]. 

As shown in Fig. 14, using high throughput methods, over 2,350 PAEs were synthesized 
(Anderson, et al., 2003). Biodegradable PAEs demonstrated efficient transfection of cells and 
26 of these polymers showed higher gene expression, compared with Lipofectamine 2000.  
Response to intracellular stimuli, such as pH, is a major advantage of a gene delivery system 
(Stayton, et al., 2005). Zugates et al synthesized new PAEs using a primary amine monomer, 
2-(pyridyldithio)-ethylamine (PDA), speculating that pyridyldithio groups in these side 
chains display fast and selective reactivity with thiols without alteration of the charge 
density of the polymer backbone, as shown in Fig. 15 (Zugates, et al., 2006). This property of 
PDA-based PAEs further led to conjugation of cell-targeting peptides or ligands for targeted 
and site-specific delivery. As one potential application, they conjugated the 
mercaptoethylamine (MEA) and the RGDC peptide to PDA PAEs. MEA-based PAE has an 
advantage that it is sensitive to glutathione. The MEA-based polymer delivery system has 
demonstrated relative stability in the extracellular space; however, it is responsive to 
intracellular conditions in which partial unpacking is triggered. 
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Fig. 14. Amino (numbers) and diacrylate (letters) monomers (left) and optimized 
transfection efficiency of the top 50 polymers relative to PEI and Lipofectamine 2000. 
[Source from Ref. (Anderson, et al., 2003)]. 

 

     

Fig. 15. Synthesis scheme of MEA (left) and cytotoxicity [C-PDA (blue), C-PDA-MEA 
(Redenti, et al.), 2-mercaptopyridine (2-MP, yellow), and PEI (green)] and transfection 
studies (right). [Source from Ref. (Zugates, et al., 2006)]. 

www.intechopen.com



 
Non-Viral Gene Therapy 

 

430 

As shown in Fig. 16, Cho’s group synthesized novel biodegradable PAEs composed of 
gamma-aminopropyl-triethoxysilane (APES) and poly (ethylene glycol) diacrylate (PEGDA) 
for gene delivery (Jere, et al., 2008). 
 

 

Fig. 16. Proposed reaction scheme for PAE copolymer (left) and transfection efficiency of 
PAE/DNA complexes in serum free-media at various mass ratios in a 293T cells (right). 
[Source from Ref. (Jere, et al., 2008)]. 

They reported that addition of PEGDA over APES resulted in a novel PAE, which shows 

high safety and transfection efficiency, especially in R121. PAE obtained from R121 showed 

good DNA binding and condensation with average particle sizes of 133 nm. In addition, 

PAE-mediated gene expression in the lung and liver was higher than that of the 

conventional PEI carrier. Of particular interest, non-invasive aerosol delivery induced 

higher gene expression in all organs, compared with an intravenous method, in an in vivo 

mice study (Park, et al., 2008). The same group developed a new PAE based on hydrophobic 

polycaprolactone (PCL) and low molecular weight branched PEI following the Michael 

addition reaction (Arote, et al., 2007). The synthesized PAE showed controlled degradation 

and was essentially non-toxic in all three cells (293T, HepG2 and HeLa) in contrast with  

PEI 25K. PAEs revealed much higher transfection efficiencies in three cell lines, compared 

with PEI 25K, and were also successfully transfected in vivo, compared with PEI 25K after 

aerosol administration. Targeting confers another important criterion in gene delivery. 

Recently, Arote et al. coupled folic acid moiety for a folate receptor targeting the PAE 

backbone using PEG (MW: 5000 Da) as a linker (Arote, et al., 2010). At the initial stage, 

folate-conjugated PAE revealed folate receptor-mediated endocytosis with elevated levels  

of luciferase expression in folate receptor positive cancer cell lines, suggesting application  

of specific ligand-modified PAE. They also developed folate-PEG-PAE (FP-PAE) as a  

gene carrier, which mediated high level folate receptor mediated endocytosis in vitro as well 

as in vivo [Fig. 17]. FP-PAE showed marked anti-tumor activity against folate receptor-

positive human KB tumors in nude mice with no evidence of toxicity during and after 

therapy using the TAM67 gene. Anti-tumor activity with PAE without folic acid moiety 

(PEG-PAE, P-PAE) proved ineffective against a xenograft mice model with KB cells when 

administered at the same dose as that of FP-PAE, suggesting that FP-PAE is a highly 

effective gene carrier capable of producing a therapeutic benefit in a xenograft mice model 

without any signs of toxicity. 
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Fig. 17. Synthesis scheme of FP-PEA (left) and effect of FP-PEA/TAM67 complexes on 
tumor growth (right). Expression level of phospho-c-Jun and suppression of tumor growth 
by FP-PEA/TAM67 complexes. [Source from Ref. (Arote, et al., 2010)]. 

In summary, PAEs have excellent characteristics as gene carriers. PAEs comprise a class of 

degradable cationic polymers with many desirable properties in the context of gene 

delivery, including condensation of DNA into nanoscale-size particles, which facilitates 

cellular uptake of DNA and protects DNA from endogenous nucleases as well as efficient 

delivery of DNA with low toxicity. Tissue targeting, endosome disruption, and nuclear 

transport should be combined for development of an effective PAE for use in gene therapy. 

Also, extensive in vitro and in vivo evaluation and optimization of PAEs will provide 

valuable information for safe and efficient gene therapy applications. 

3. Conclusion 

Gene therapy shows tremendous promise for a broad spectrum of clinical applications. 

Development of a safe and efficient gene delivery system is one of the main challenges to be 

solved before this strategy can be adopted for routine use in clinical trails. In this chapter, 

medical polymers, including CD, chitosan, PEI, PAEs, and their derivatives as non-viral 

vectors in the area of gene therapy have been described. Although more development of 

structure-function relationships and fundamental research into cellular processes in vitro 

and in vivo should be performed for future direction of medical polymer based gene carriers, 

combination of these polymers will be a way to reduce toxicity and enhance tranfection 

efficiency. Also, selective tissue or cell targeting ligand conjugation will provide cell-

specificity or improve transfection efficiency. Nowadays, multiple targeting gene therapy 

with multiple-functionalized genes and delivery system are possible. Suitable formulations 

of these polyplexes with low toxicity and high transfection efficiency must be chosen for in 

vivo use, which will allow for multiple applications of therapeutic genes; however, for this 

idea to be realized, much work lies ahead. 
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