24 research outputs found

    The role of confined placental mosaicism in fetal growth restriction:A retrospective cohort study

    Get PDF
    Objective: To evaluate which cytogenetic characteristics of confined placental mosaicism (CPM) detected in the first trimester chorionic villi and/or placentas in terms of chromosome aberration, cell lineage involved and trisomy origin will lead to fetal growth restriction and low birthweight. Methods: Cohort study using routinely collected perinatal data and cytogenetic data of non-invasive prenatal testing, the first trimester chorionic villi sampling and postnatal placentas. Results: 215 CPM cases were found. Fetal growth restriction (FGR) and low birthweight below the 10 th percentile (BW &lt; p10) were seen in 34.0% and 23.1%, respectively. Excluding cases of trisomy 16, 29.1% showed FGR and 17.9% had a BW &lt; p10. The highest rate of FGR and BW &lt; p10 was found in CPM type 3, but differences with type 1 and 2 were not significant. FGR and BW &lt; p10 were significantly more often observed in cases with meiotic trisomies. Conclusion: There is an association between CPM and FGR and BW &lt; p10. This association is not restricted to trisomy 16, neither to CPM type 3, nor to CPM involving a meiotic trisomy. Pregnancies with all CPM types and origins should be considered to be at increased risk of FGR and low BW &lt; p10. A close prenatal fetal monitoring is indicated in all cases of CPM.</p

    Biallelic KIF24 Variants Are Responsible for a Spectrum of Skeletal Disorders Ranging From Lethal Skeletal Ciliopathy to Severe Acromesomelic Dysplasia

    Get PDF
    Skeletal dysplasias comprise a large spectrum of mostly monogenic disorders affecting bone growth, patterning, and homeostasis, and ranging in severity from lethal to mild phenotypes. This study aimed to underpin the genetic cause of skeletal dysplasia in three unrelated families with variable skeletal manifestations. The six affected individuals from three families had severe short stature with extreme shortening of forelimbs, short long-bones, and metatarsals, and brachydactyly (family 1); mild short stature, platyspondyly, and metaphyseal irregularities (family 2); or a prenatally lethal skeletal dysplasia with kidney features suggestive of a ciliopathy (family 3). Genetic studies by whole genome, whole exome, and ciliome panel sequencing identified in all affected individuals biallelic missense variants in KIF24, which encodes a kinesin family member controlling ciliogenesis. In families 1 and 3, with the more severe phenotype, the affected subjects harbored homozygous variants (c.1457A>G; p.(Ile486Val) and c.1565A>G; p.(Asn522Ser), respectively) in the motor domain which plays a crucial role in KIF24 function. In family 2, compound heterozygous variants (c.1697C>T; p.(Ser566Phe)/c.1811C>T; p.(Thr604Met)) were found C-terminal to the motor domain, in agreement with a genotype-phenotype correlation. In vitro experiments performed on amnioblasts of one affected fetus from family 3 showed that primary cilia assembly was severely impaired, and that cytokinesis was also affected. In conclusion, our study describes novel forms of skeletal dysplasia associated with biallelic variants in KIF24. To our knowledge this is the first report implicating KIF24 variants as the cause of a skeletal dysplasia, thereby extending the genetic heterogeneity and the phenotypic spectrum of rare bone disorders and underscoring the wide range of monogenetic skeletal ciliopathies. (c) 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Peer reviewe

    The High Diagnostic Yield of Prenatal Exome Sequencing Followed by 3400 Gene Panel Analysis in 629 Ongoing Pregnancies With Ultrasound Anomalies

    Get PDF
    Background: The aim of this study was to evaluate the diagnostic yield of routine exome sequencing (ES) in fetuses with ultrasound anomalies. Methods: We performed a retrospective analysis of the ES results of 629 fetuses with isolated or multiple anomalies referred in 2019–2022. Variants in a gene panel consisting of approximately 3400 genes associated with multiple congenital anomalies and/or intellectual disability were analyzed. We used trio analysis and filtering for de novo variants, compound heterozygous variants, homozygous variants, X-linked variants, variants in imprinted genes, and known pathogenic variants. Results: Pathogenic and likely pathogenic variants (class five and four, respectively) were identified in 14.0% (88/629, 95% CI 11.5%–16.9%) of cases. In the current cohort, the probability of detecting a monogenetic disorder was ∌1:7 (88/629, 95% CI 1:8.7–1:5.9), ranging from 1:9 (49/424) in cases with one major anomaly to 1:5 (32/147) in cases with multiple system anomalies. Conclusions: Our results indicate that a notable number of fetuses (1:7) with ultrasound anomalies and a normal chromosomal microarray have a (likely) pathogenic variant that can be detected through prenatal ES. These results warrant implementation of exome sequencing in selected cases, including those with an isolated anomaly on prenatal ultrasound.</p

    N-Acetylglutamate Synthase Deficiency Due to a Recurrent Sequence Variant in the N-acetylglutamate Synthase Enhancer Region

    Get PDF
    N-acetylglutamate synthase deficiency (NAGSD, MIM #237310) is an autosomal recessive disorder of the urea cycle that results from absent or decreased production of N-acetylglutamate (NAG) due to either decreased NAGS gene expression or defective NAGS enzyme. NAG is essential for the activity of carbamylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of the urea cycle. NAGSD is the only urea cycle disorder that can be treated with a single drug, N-carbamylglutamate (NCG), which can activate CPS1 and completely restore ureagenesis in patients with NAGSD. We describe a novel sequence variant NM_153006.2:c.-3026C > T in the NAGS enhancer that was found in three patients from two families with NAGSD; two patients had hyperammonemia that resolved upon treatment with NCG, while the third patient increased dietary protein intake after initiation of NCG therapy. Two patients were homozygous for the variant while the third patient had the c.-3026C > T variant and a partial uniparental disomy that encompassed the NAGS gene on chromosome 17. The c.-3026C > T sequence variant affects a base pair that is highly conserved in vertebrates; the variant is predicted to be deleterious by several bioinformatics tools. Functional assays in cultured HepG2 cells demonstrated that the c.-3026C > T substitution could result in reduced expression of the NAGS gene. These findings underscore the importance of analyzing NAGS gene regulatory regions when looking for molecular causes of NAGSD

    MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature.

    Get PDF
    Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders

    The phenotypic spectrum of WWOX -related disorders: 20 additional cases of WOREE syndrome and review of the literature

    Get PDF
    Purpose: Germline WWOX pathogenic variants have been associated with disorder of sex differentiation (DSD), spinocerebellar ataxia (SCA), and WWOX-related epileptic encephalopathy (WOREE syndrome). We review clinical and molecular data on WWOX-related disorders, further describing WOREE syndrome and phenotype/genotype correlations. Methods: We report clinical and molecular findings in 20 additional patients from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants in the WWOX gene. Different molecular screening approaches were used (quantitative polymerase chain reaction/multiplex ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome sequencing). Results: Two copy-number variations (CNVs) or two single-nucleotide variations (SNVs) were found respectively in four and nine families, with compound heterozygosity for one SNV and one CNV in five families. Eight novel missense pathogenic variants have been described. By aggregating our patients with all cases reported in the literature, 37 patients from 27 families with WOREE syndrome are known. This review suggests WOREE syndrome is a very severe epileptic encephalopathy characterized by absence of language development and acquisition of walking, early-onset drug-resistant seizures, ophthalmological involvement, and a high likelihood of premature death. The most severe clinical presentation seems to be associated with null genotypes. Conclusion: Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic encephalopathy. We report here the largest cohort of individuals with WOREE syndrome

    Chromosomal mosaicism in human blastocysts: a cytogenetic comparison of trophectoderm and inner cell mass after next-generation sequencing

    Get PDF
    Research question: What is the incidence of chromosomal mosaicism in human blastocysts and can a single trophectoderm (TE) biopsy accurately predict the chromosomal constitution of the inner cell mass (ICM)? Design: Observational study in 46 surplus cryopreserved preimplantation embryos of unknown chromosomal constitution. For each embryo, a TE biopsy was performed and the ICM was collected separately. Both samples underwent next-generation sequencing (NGS) for cytogenetic analysis and were classified as chromosomally normal, abnormal or mosaic. Mosaic samples were classified as low or high mosaic, based on the majority dominance of either normal or abnormal cells in the biopsied sample. Findings within each embryo were compared. Results: Chromosomal mosaicism was detected in 59% (n = 27/46) of the embryos, with a cytogenetic concordance rate between TE and corresponding ICM of 48% (n = 22/46). Concordance was higher from a clinical perspective: in 86% of embryos with a high-mosaic or abnormal TE, the ICM was also high-mosaic or abnormal. In 88% of the blastocysts with a normal or low-mosaic TE biopsy, a normal or low-mosaic ICM was observed. Conclusion: Despite the low cytogenetic concordance rate due to chromosomal mosaicism present in blastocysts, it was found that a single TE biopsy could correctly predict whether the ICM consists of mostly normal or abnormal cells in the majority of cases

    Idiopathic noncirrhotic portal hypertension is associated with poor survival: results of a long-term cohort study

    No full text
    Background Idiopathic noncirrhotic portal hypertension (INCPH) is a rare disease in the Western world. As a result, little is known about the clinical characteristics and outcome of these patients. Survival in these patients is considered to be similar to that of the general population. Aim To investigate the clinical manifestations, pathophysiology, outcome and determinants of survival in Western INCPH patients. Methods Multicentre cohort study of INCPH patients. Results A total of 62 patients were followed for a median time of 90 months (range 24310). Initial manifestations leading to the diagnosis of INCPH were related to portal hypertension in 82% of the patients. Histological signs of portal blood supply disturbances were present in nearly all patients. During follow-up, 12 of 62 patients developed liver decompensation, of which four were considered for liver transplantation. One patient died in the context of variceal bleeding. Hepatocellular carcinoma was Conclusions In comparison to the general population, survival in INCPH patients is poor. Mortality is related to associated disorders and medical conditions occurring at older age. Patients rarely die due to liver related complications. Patients with ascites have a poor prognosis
    corecore