748 research outputs found
An Efficient Algorithm For Chinese Postman Walk on Bi-directed de Bruijn Graphs
Sequence assembly from short reads is an important problem in biology. It is
known that solving the sequence assembly problem exactly on a bi-directed de
Bruijn graph or a string graph is intractable. However finding a Shortest
Double stranded DNA string (SDDNA) containing all the k-long words in the reads
seems to be a good heuristic to get close to the original genome. This problem
is equivalent to finding a cyclic Chinese Postman (CP) walk on the underlying
un-weighted bi-directed de Bruijn graph built from the reads. The Chinese
Postman walk Problem (CPP) is solved by reducing it to a general bi-directed
flow on this graph which runs in O(|E|2 log2(|V |)) time. In this paper we show
that the cyclic CPP on bi-directed graphs can be solved without reducing it to
bi-directed flow. We present a ?(p(|V | + |E|) log(|V |) + (dmaxp)3) time
algorithm to solve the cyclic CPP on a weighted bi-directed de Bruijn graph,
where p = max{|{v|din(v) - dout(v) > 0}|, |{v|din(v) - dout(v) < 0}|} and dmax
= max{|din(v) - dout(v)}. Our algorithm performs asymptotically better than the
bidirected flow algorithm when the number of imbalanced nodes p is much less
than the nodes in the bi-directed graph. From our experimental results on
various datasets, we have noticed that the value of p/|V | lies between 0.08%
and 0.13% with 95% probability
Cerulean: A hybrid assembly using high throughput short and long reads
Genome assembly using high throughput data with short reads, arguably,
remains an unresolvable task in repetitive genomes, since when the length of a
repeat exceeds the read length, it becomes difficult to unambiguously connect
the flanking regions. The emergence of third generation sequencing (Pacific
Biosciences) with long reads enables the opportunity to resolve complicated
repeats that could not be resolved by the short read data. However, these long
reads have high error rate and it is an uphill task to assemble the genome
without using additional high quality short reads. Recently, Koren et al. 2012
proposed an approach to use high quality short reads data to correct these long
reads and, thus, make the assembly from long reads possible. However, due to
the large size of both dataset (short and long reads), error-correction of
these long reads requires excessively high computational resources, even on
small bacterial genomes. In this work, instead of error correction of long
reads, we first assemble the short reads and later map these long reads on the
assembly graph to resolve repeats.
Contribution: We present a hybrid assembly approach that is both
computationally effective and produces high quality assemblies. Our algorithm
first operates with a simplified version of the assembly graph consisting only
of long contigs and gradually improves the assembly by adding smaller contigs
in each iteration. In contrast to the state-of-the-art long reads error
correction technique, which requires high computational resources and long
running time on a supercomputer even for bacterial genome datasets, our
software can produce comparable assembly using only a standard desktop in a
short running time.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
"Holey Sheets" - Pfaffians and Subdeterminants as D-brane Operators in Large N Gauge Theories
In the AdS/CFT correspondence, wrapped D3-branes (such as "giant gravitons")
on the string theory side of the correspondence have been identified with
Pfaffian, determinant and subdeterminant operators on the field theory side. We
substantiate this identification by showing that the presence of pairs of such
operators in a correlation function of a large N gauge theory naturally leads
to a modified 't Hooft expansion including also worldsheets with boundaries.
This happens independently of supersymmetry or conformal invariance.Comment: 39 pages, 10 figures, harvma
LeakWatch: Estimating Information Leakage from Java Programs
Abstract. Programs that process secret data may inadvertently reveal information about those secrets in their publicly-observable output. This paper presents LeakWatch, a quantitative information leakage analysis tool for the Java programming language; it is based on a flexible “point-to-point ” information leakage model, where secret and publiclyobservable data may occur at any time during a program’s execution. LeakWatch repeatedly executes a Java program containing both secret and publicly-observable data and uses robust statistical techniques to provide estimates, with confidence intervals, for min-entropy leakage (using a new theoretical result presented in this paper) and mutual information. We demonstrate how LeakWatch can be used to estimate the size of information leaks in a range of real-world Java programs
Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions
We find all the higher dimensional solutions of the Einstein-Maxwell theory
that are the topological product of two manifolds of constant curvature. These
solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with
toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit
results for any dimension D>3. These solutions are generated from the
appropriate extremal limits of the higher dimensional near-extreme black holes
in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and
the charge parameters of the higher dimensional extreme black holes as a
function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio
Thermodynamic and gravitational instability on hyperbolic spaces
We study the properties of anti--de Sitter black holes with a Gauss-Bonnet
term for various horizon topologies (k=0, \pm 1) and for various dimensions,
with emphasis on the less well understood k=-1 solution. We find that the zero
temperature (and zero energy density) extremal states are the local minima of
the energy for AdS black holes with hyperbolic event horizons. The hyperbolic
AdS black hole may be stable thermodynamically if the background is defined by
an extremal solution and the extremal entropy is non-negative. We also
investigate the gravitational stability of AdS spacetimes of dimensions D>4
against linear perturbations and find that the extremal states are still the
local minima of the energy. For a spherically symmetric AdS black hole
solution, the gravitational potential is positive and bounded, with or without
the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet
coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS
space), is found useful to keep the potential bounded from below, as required
for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps
figure
Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems
We calculate the current and the spin-torque in small symmetric double tunnel
barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems.
Spin-accumulation on the superconductor governs the transport properties when
the spin-flip relaxation time is longer than the transport dwell time. In the
elastic transport regime, it is demonstrated that the relative change in the
current (spin-torque) for F-S-F systems equals the relative change in the
current (spin-torque) for F-N-F systems upon changing the relative
magnetization direction of the two ferromagnets. This differs from the results
in the inelastic transport regime where spin-accumulation suppresses the
superconducting gap and dramatically changes the magnetoresistance [S.
Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The
experimental relevance of the elastic and inelastic transport regimes,
respectively, as well as the reasons for the change in the transport properties
are discussed.Comment: 7 page
Surface Terms as Counterterms in the AdS/CFT Correspondence
We examine the recently proposed technique of adding boundary counterterms to
the gravitational action for spacetimes which are locally asymptotic to anti-de
Sitter. In particular, we explicitly identify higher order counterterms, which
allow us to consider spacetimes of dimensions d<=7. As the counterterms
eliminate the need of ``background subtraction'' in calculating the action, we
apply this technique to study examples where the appropriate background was
ambiguous or unknown: topological black holes, Taub-NUT-AdS and Taub-Bolt-AdS.
We also identify certain cases where the covariant counterterms fail to render
the action finite, and we comment on the dual field theory interpretation of
this result. In some examples, the case of vanishing cosmological constant may
be recovered in a limit, which allows us to check results and resolve
ambiguities in certain asymptotically flat spacetime computations in the
literature.Comment: Revtex, 18 pages. References updated and few typo's fixed. Final
versio
Charged AdS Black Holes and Catastrophic Holography
We compute the properties of a class of charged black holes in anti-de Sitter
space-time, in diverse dimensions. These black holes are solutions of
consistent Einstein-Maxwell truncations of gauged supergravities, which are
shown to arise from the inclusion of rotation in the transverse space. We
uncover rich thermodynamic phase structures for these systems, which display
classic critical phenomena, including structures isomorphic to the van der
Waals-Maxwell liquid-gas system. In that case, the phases are controlled by the
universal `cusp' and `swallowtail' shapes familiar from catastrophe theory. All
of the thermodynamics is consistent with field theory interpretations via
holography, where the dual field theories can sometimes be found on the world
volumes of coincident rotating branes.Comment: 19 pages, revtex, psfig, 6 multicomponent figures, typos, references
and a few remarks have been repaired, and adde
Reissner-Nordstrom-de Sitter black hole, planar coordinates and dS/CFT
We discuss the Reissner-Nordstrom-de Sitter black holes in the context of
dS/CFT correspondence by using static and planar coordinates. The boundary
stress tensor and the mass of the solutions are computed. Also, we investigate
how the RG flow is changed for different foliations. The Kastor-Traschen
multi-black hole solution is considered as well as AdS counterparts of these
configurations. In particular, we find that in planar coordinates the black
holes appear like punctures in the dual boundary theory.Comment: 30 pages, 3 eps figures, JHEP style v2: new references added,
misprints correcte
- …
