2,152 research outputs found
Fragment isospin distributions and the phase diagram of excited nuclear systems
Fragment average isospin distributions are investigated within a
microcanonical multifragmentation model in different regions of the phase
diagram. The results indicate that in the liquid phase versus is
monotonically increasing, in the phase coexistence region it has a rise and
fall shape and in the gas phase it is constant. Deviations from this behavior
may manifest at low fragment multiplicity as a consequence of mass/charge
conservation. Characterization of the "free" and "bound" phases function of
fragment charge reconfirms the neutron enrichment of the "free" phase with
respect to the "bound" one irrespectively the localization of the
multifragmentation event in the phase diagram.Comment: 23 pages, 12 figure
A new class of magnetically actuated pumps and valves for microfluidic applications
This is the final version of the article. Available from Springer Nature via the DOI in this record.We propose a new class of magnetically actuated pumps and valves that could be incorporated into microfluidic chips with no further external connections. The idea is to repurpose ferromagnetic low Reynolds number swimmers as devices capable of generating fluid flow, by restricting the swimmers’ translational degrees of freedom. We experimentally investigate the flow structure generated by a pinned swimmer in different scenarios, such as unrestricted flow around it as well as flow generated in straight, cross-shaped, Y-shaped and circular channels. This demonstrates the feasibility of incorporating the device into a channel and its capability of acting as a pump, valve and flow splitter. Different regimes could be selected by tuning the frequency and amplitude of the external magnetic field driving the swimmer, or by changing the channel orientation with respect to the field. This versatility endows the device with varied functionality which, together with the robust remote control and reproducibility, makes it a promising candidate for several applications.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 665440. We also acknowledge support via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1)
Comments on scaling limits of 4d N=2 theories
We revisit the study of the maximally singular point in the Coulomb branch of
4d N=2 SU(N) gauge theory with N_f=2n flavors for N_f= 2, we find
that the low-energy physics is described by two non-trivial superconformal
field theories coupled to a magnetic SU(2) gauge group which is infrared free.
(In the special case n=2, one of these theories is a theory of free
hypermultiplets.) This observation removes a possible counter example to a
conjectured a-theorem.Comment: 13 page
Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation
We carry out the holographic renormalization of Einstein-Maxwell theory with
curvature-squared corrections. In particular, we demonstrate how to construct
the generalized Gibbons-Hawking surface term needed to ensure a perturbatively
well-defined variational principle. This treatment ensures the absence of ghost
degrees of freedom at the linearized perturbative order in the
higher-derivative corrections. We use the holographically renormalized action
to study the thermodynamics of R-charged black holes with higher derivatives
and to investigate their mass to charge ratio in the extremal limit. In five
dimensions, there seems to be a connection between the sign of the higher
derivative couplings required to satisfy the weak gravity conjecture and that
violating the shear viscosity to entropy bound. This is in turn related to
possible constraints on the central charges of the dual CFT, in particular to
the sign of c-a.Comment: 30 pages. v2: references added, some equations simplifie
Recommended from our members
Distribution of halon-1211 in the upper troposphere and lower stratosphere and the 1994 total bromine budget
Z-extremization and F-theorem in Chern-Simons matter theories
The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition
function localized on a three sphere. Here we verify this statement at weak
coupling. We give a detailed analysis for two classes of models. The first one
is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter
fields, while the second is a flavored version of the ABJ theory, where the CS
levels are large but they do not necessarily sum up to zero. We study in both
cases superpotential deformations and compute the R charges at different fixed
points. When these fixed points are connected by an RG flow we explicitly
verify that the free energy decreases at the endpoints of the flow between the
fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
Differential impact of severe drought on infant mortality in two sympatric neotropical primates
Extreme climate events can have important consequences for the dynamics of natural populations, and severe droughts are predicted to become more common and intense due to climate change. We analysed infant mortality in relation to drought in two primate species (white-faced capuchins, Cebus capucinus imitator, and Geoffroy's spider monkeys, Ateles geoffroyi) in a tropical dry forest in northwestern Costa Rica. Our survival analyses combine several rare and valuable long-term datasets, including long-term primate life-history, landscape-scale fruit abundance, food-tree mortality, and climate conditions. Infant capuchins showed a threshold mortality response to drought, with exceptionally high mortality during a period of intense drought, but not during periods of moderate water shortage. By contrast, spider monkey females stopped reproducing during severe drought, and the mortality of infant spider monkeys peaked later during a period of low fruit abundance and high food-tree mortality linked to the drought. These divergent patterns implicate differing physiology, behaviour or associated factors in shaping species-specific drought responses. Our findings link predictions about the Earth's changing climate to environmental influences on primate mortality risk and thereby improve our understanding of how the increasing severity and frequency of droughts will affect the dynamics and conservation of wild primates
A Spatial Cluster Analysis of Tractor Overturns in Kentucky from 1960 to 2002
Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns.A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns.The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001).This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky
- …