20,866 research outputs found

    Electrical characterization of a Mapham inverter using pulse testing techniques

    Get PDF
    Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems

    Antiferromagnetic s-d exchange coupling in GaMnAs

    Full text link
    Measurements of coherent electron spin dynamics in Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an antiferromagnetic (negative) exchange bewteen s-like conduction band electrons and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of the s-d exchange parameter, N0 alpha, varies as a function of well width indicative of a large and negative contribution due to kinetic exchange. In the limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs. Measurements of the polarization-resolved photoluminescence show strong discrepancy from a simple model of the exchange enhanced Zeeman splitting, indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur

    Optoelectronic control of spin dynamics at near-THz frequencies in magnetically doped quantum wells

    Full text link
    We use time-resolved Kerr rotation to demonstrate the optical and electronic tuning of both the electronic and local moment (Mn) spin dynamics in electrically gated parabolic quantum wells derived from II-VI diluted magnetic semiconductors. By changing either the electrical bias or the laser energy, the electron spin precession frequency is varied from 0.1 to 0.8 THz at a magnetic field of 3 T and at a temperature of 5 K. The corresponding range of the electrically-tuned effective electron g-factor is an order of magnitude larger compared with similar nonmagnetic III-V parabolic quantum wells. Additionally, we demonstrate that such structures allow electrical modulation of local moment dynamics in the solid state, which is manifested as changes in the amplitude and lifetime of the Mn spin precession signal under electrical bias. The large variation of electron and Mn-ion spin dynamics is explained by changes in magnitude of the sp&#8722;d exchange overlap.Comment: 4 pages, 3 figure

    Deformation Energy Minima at Finite Mass Asymmetry

    Get PDF
    A very general saddle point nuclear shape may be found as a solution of an integro-differential equation without giving apriori any shape parametrization. By introducing phenomenological shell corrections one obtains minima of deformation energy for binary fission of parent nuclei at a finite (non-zero) mass asymmetry. Results are presented for reflection asymmetric saddle point shapes of thorium and uranium even-mass isotopes with A=226-238 and A=230-238 respectively.Comment: 5 pages, 2 Postscript figures, REVTeX, Version 4.

    Open timelike curves violate Heisenberg's uncertainty principle

    Get PDF
    Toy models for quantum evolution in the presence of closed timelike curves (CTCs) have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require non-trivial interactions between the future and past which lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the CTC, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenberg's uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave-packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time-dilation suggests that OTCs provide a novel alternative to existing proposals for the behaviour of quantum systems under gravity

    Excitation energy dependence of symmetry energy of finite nuclei

    Get PDF
    A finite range density and momentum dependent effective interaction is used to calculate the density and temperature dependence of the symmetry energy coefficient Csym(rho,T) of infinite nuclear matter. This symmetry energy is then used in the local density approximation to evaluate the excitation energy dependence of the symmetry energy coefficient of finite nuclei in a microcanonical formulation that accounts for thermal and expansion effects. The results are in good harmony with the recently reported experimental data from energetic nucleus-nucleus collisions.Comment: 11 pages, 3 figures, revtex4; minor changes in text, axis label in figure 1 correcte

    High temperature power electronics for space

    Get PDF
    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented

    Multi-megawatt inverter/converter technology for space power applications

    Get PDF
    Large power conditioning mass reductions will be required to enable megawatt power systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. Phase 1 of a proposed two phase interagency program has been completed to develop an 0.1 kg/kW DC/DC converter technology base for these future space applications. Three contractors, Hughes, General Electric (GE), and Maxwell were Phase 1 contractors in a competitive program to develop a megawatt lightweight DC/DC converter. Researchers at NASA Lewis Research Center and the University of Wisconsin also investigated technology in topology and control. All three contractors, as well as the University of Wisconsin, concluded at the end of the Phase 1 study, which included some critical laboratory work, that 0.1-kg/kW megawatt DC/DC converters can be built. This is an order of magnitude lower specific weight than is presently available. A brief description of each of the concepts used to meet the ambitious goals of this program are presented

    Electrical properties of teflon and ceramic capacitors at high temperatures

    Get PDF
    Space power systems and components are often required to operate efficiently and reliably in harsh environments where stresses, such as high temperature, are encountered. These systems must, therefore, withstand exposure to high temperature while still providing good electrical and other functional properties. Experiments were carried out to evaluate Teflon and ceramic capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature, up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed in a temperature range from 25 to 200 C. The results obtained are discussed and conclusions are made concerning the suitability of the capacitors studied for high temperature applications
    • …
    corecore