2,717 research outputs found

    Chapter 9: Biomechanics

    Get PDF
    Biomechanics is a discipline. A discipline deals with understanding, predicting, and explaining phenomena within a content domain, and biomechanics is the study of the human body in motion. By applying principles from mechanics and engineering, biomechanists are able to study the forces that act on the body and the effects they produce (Bates, 1991). Hay (1973) describes biomechanics as the science that examines forces acting on and within a biological structure and the effects produced by such forces, whereas Alt (1967) describes biomechanics as the science that investigates the effect of internal and external forces on human and animal bodies in movement and at rest. Each of these definitions describes the essential relationship between humans and mechanics found in biomechanics

    Assessing a candidate IIA dual to metastable supersymmetry-breaking

    Full text link
    We analyze the space of linearized non-supersymmetric deformations around a IIA solution found by Cvetic, Gibbons, Lu and Pope (CGLP) in hep-th/0101096. We impose boundary conditions aimed at singling out among those perturbations those describing the backreaction of anti-D2 branes on the CGLP background. The corresponding supergravity solution is a would-be dual to a metastable supersymmetry-breaking state. However, it turns out that this candidate bulk solution is inevitably riddled with IR divergences of its flux densities and action, whose physical meaning and implications for models of string cosmology call for further investigation.Comment: 33 pages. v2: reference added, clarifications in the introductio

    Determinants of adults' intention to vaccinate against pandemic swine flu

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This article has been made available through the Brunel Open Access Publishing Fund.Background: Vaccination is one of the cornerstones of controlling an influenza pandemic. To optimise vaccination rates in the general population, ways of identifying determinants that influence decisions to have or not to have a vaccination need to be understood. Therefore, this study aimed to predict intention to have a swine influenza vaccination in an adult population in the UK. An extension of the Theory of Planned Behaviour provided the theoretical framework for the study. Methods: Three hundred and sixty two adults from the UK, who were not in vaccination priority groups, completed either an online (n = 306) or pen and paper (n = 56) questionnaire. Data were collected from 30th October 2009, just after swine flu vaccination became available in the UK, and concluded on 31st December 2009. The main outcome of interest was future swine flu vaccination intentions. Results: The extended Theory of Planned Behaviour predicted 60% of adults’ intention to have a swine flu vaccination with attitude, subjective norm, perceived control, anticipating feelings of regret (the impact of missing a vaccination opportunity), intention to have a seasonal vaccine this year, one perceived barrier: “I cannot be bothered to get a swine flu vaccination” and two perceived benefits: “vaccination decreases my chance of getting swine flu or its complications” and “if I get vaccinated for swine flu, I will decrease the frequency of having to consult my doctor,” being significant predictors of intention. Black British were less likely to intend to have a vaccination compared to Asian or White respondents. Conclusions: Theoretical frameworks which identify determinants that influence decisions to have a pandemic influenza vaccination are useful. The implications of this research are discussed with a view to maximising any future pandemic influenza vaccination uptake using theoretically-driven applications.This article is available through the Brunel Open Access Publishing Fund

    Understanding patient acceptance and refusal of HIV testing in the emergency department

    Get PDF
    <p>ABSTRACT</p> <p>Background</p> <p>Despite high rates of patient satisfaction with emergency department (ED) HIV testing, acceptance varies widely. It is thought that patients who decline may be at higher risk for HIV infection, thus we sought to better understand patient acceptance and refusal of ED HIV testing.</p> <p>Methods</p> <p>In-depth interviews with fifty ED patients (28 accepters and 22 decliners of HIV testing) in three ED HIV testing programs that serve vulnerable urban populations in northern California.</p> <p>Results</p> <p>Many factors influenced the decision to accept ED HIV testing, including curiosity, reassurance of negative status, convenience, and opportunity. Similarly, a number of factors influenced the decision to decline HIV testing, including having been tested recently, the perception of being at low risk for HIV infection due to monogamy, abstinence or condom use, and wanting to focus on the medical reason for the ED visit. Both accepters and decliners viewed ED HIV testing favorably and nearly all participants felt comfortable with the testing experience, including the absence of counseling. While many participants who declined an ED HIV test had logical reasons, some participants also made clear that they would prefer not to know their HIV status rather than face psychosocial consequences such as loss of trust in a relationship or disclosure of status in hospital or public health records.</p> <p>Conclusions</p> <p>Testing for HIV in the ED as for any other health problem reduces barriers to testing for some but not all patients. Patients who decline ED HIV testing may have rational reasons, but there are some patients who avoid HIV testing because of psychosocial ramifications. While ED HIV testing is generally acceptable, more targeted approaches to testing are necessary for this subgroup.</p

    Metastable Vacua and the Backreacted Stenzel Geometry

    Full text link
    We construct an M-theory background dual to the metastable state recently discussed by Klebanov and Pufu, which corresponds to placing a stack of anti-M2 branes at the tip of a warped Stenzel space. With this purpose we analytically solve for the linearized non-supersymmetric deformations around the warped Stenzel space, preserving the SO(5) symmetries of the supersymmetric background, and which interpolate between the IR and UV region. We identify the supergravity solution which corresponds to a stack of Nˉ\bar{N} backreacting anti-M2 branes by fixing all the 12 integration constants in terms of Nˉ\bar{N}. While in the UV this solution has the desired features to describe the conjectured metastable state of the dual (2+1)-dimensional theory, in the IR it suffers from a singularity in the four-form flux, which we describe in some details.Comment: 33 pages, 3 figure

    Impact of climate change on the domestic indoor environment and associated health risks in the UK.

    Get PDF
    There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health. We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination. Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived. A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted

    Acquiring Tetanus After Hemorrhoid Banding and Other Gastrointestinal Procedures

    Get PDF
    Tetanus after hemorrhoidal banding is an extremely rare but serious complication of the procedure. We describe the second reported case of this complication and review the literature concerning tetanus after different gastrointestinal procedures. Although a rare complication, practicing physicians need to be aware of the clinical presentation of this deadly disease when encountered in at-risk patient populations. Such cases also reemphasize the importance of primary tetanus immunization and follow-up boosters for all vulnerable patients

    Application of the speed-duration relationship to normalize the intensity of high-intensity interval training

    Get PDF
    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P&#60;0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P&#62;0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P&#62;0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols

    On renormalization group flows and the a-theorem in 6d

    Full text link
    We study the extension of the approach to the a-theorem of Komargodski and Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order p^6 in the low energy limit of n-point scattering amplitudes of the dilaton for n > 3. The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect n-point amplitudes at order p^6. The calculation in the (2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4. Given the confirmation in two distinct models, we attempt to use dispersion relations to prove that the anomaly flow is positive in general. Unfortunately the 4-point matrix element of the Euler anomaly is proportional to stu and vanishes for forward scattering. Thus the optical theorem cannot be applied to show positivity. Instead the anomaly flow is given by a dispersion sum rule in which the integrand does not have definite sign. It may be possible to base a proof of the a-theorem on the analyticity and unitarity properties of the 6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure

    From Necklace Quivers to the F-theorem, Operator Counting, and T(U(N))

    Full text link
    The matrix model of Kapustin, Willett, and Yaakov is a powerful tool for exploring the properties of strongly interacting superconformal Chern-Simons theories in 2+1 dimensions. In this paper, we use this matrix model to study necklace quiver gauge theories with {\cal N}=3 supersymmetry and U(N)^d gauge groups in the limit of large N. In its simplest application, the matrix model computes the free energy of the gauge theory on S^3. The conjectured F-theorem states that this quantity should decrease under renormalization group flow. We show that for a simple class of such flows, the F-theorem holds for our necklace theories. We also provide a relationship between matrix model eigenvalue distributions and numbers of chiral operators that we conjecture holds more generally. Through the AdS/CFT correspondence, there is therefore a natural dual geometric interpretation of the matrix model saddle point in terms of volumes of 7-d tri-Sasaki Einstein spaces and some of their 5-d submanifolds. As a final bonus, our analysis gives us the partition function of the T(U(N)) theory on S^3.Comment: 3 figures, 41 pages; v2 minor improvements, refs adde
    corecore