40 research outputs found

    The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Klotho </it>was originally characterized as an anti-aging gene that predisposed Klotho-deficient mice to a premature aging-like syndrome. Recently, KLOTHO was reported to function as a secreted Wnt antagonist and as a tumor suppressor. Epigenetic gene silencing of secreted Wnt antagonists is considered a common event in a wide range of human malignancies. Abnormal activation of the canonical Wnt pathway due to epigenetic deregulation of Wnt antagonists is thought to play a crucial role in cervical tumorigenesis. In this study, we examined epigenetic silencing of <it>KLOTHO </it>in human cervical carcinoma.</p> <p>Results</p> <p>Loss of <it>KLOTHO </it>mRNA was observed in several cervical cancer cell lines and in invasive carcinoma samples, but not during the early, preinvasive phase of primary cervical tumorigenesis. <it>KLOTHO </it>mRNA was restored after treatment with either the DNA demethylating agent 2'-deoxy-5-azacytidine or histone deacetylase inhibitor trichostatin A. Methylation-specific PCR and bisulfite genomic sequencing analysis of the promoter region of <it>KLOTHO </it>revealed CpG hypermethylation in non-<it>KLOTHO</it>-expressing cervical cancer cell lines and in 41% (9/22) of invasive carcinoma cases. Histone deacetylation was also found to be the major epigenetic silencing mechanism for <it>KLOTHO </it>in the SiHa cell line. Ectopic expression of the secreted form of KLOTHO restored anti-Wnt signaling and anti-clonogenic activity in the CaSki cell line including decreased active β-catenin levels, suppression of T-cell factor/β-catenin target genes, such as <it>c-MYC </it>and <it>CCND1</it>, and inhibition of colony growth.</p> <p>Conclusions</p> <p>Epigenetic silencing of <it>KLOTHO </it>may occur during the late phase of cervical tumorigenesis, and consequent functional loss of KLOTHO as the secreted Wnt antagonist may contribute to aberrant activation of the canonical Wnt pathway in cervical carcinoma.</p

    Noninvasive predictors of nonalcoholic steatohepatitis in Korean patients with histologically proven nonalcoholic fatty liver disease

    Get PDF
    Background/AimsThe aims of this study were (1) to identify the useful clinical parameters of noninvasive approach for distinguishing nonalcoholic steatohepatitis (NASH) from nonalcoholic fatty liver disease (NAFLD), and (2) to determine whether the levels of the identified parameters are correlated with the severity of liver injury in patients with NASH.MethodsOne hundred and eight consecutive patients with biopsy-proven NAFLD (age, 39.8±13.5 years, mean±SD; males, 67.6%) were prospectively enrolled from 10 participating centers across Korea.ResultsAccording to the original criteria for NAFLD subtypes, 67 patients (62.0%) had NASH (defined as steatosis with hepatocellular ballooning and/or Mallory-Denk bodies or fibrosis ≥2). Among those with NAFLD subtype 3 or 4, none had an NAFLD histologic activity score (NAS) below 3 points, 40.3% had a score of 3 or 4 points, and 59.7% had a score >4 points. Fragmented cytokeratin-18 (CK-18) levels were positively correlated with NAS (r=0.401), as well as NAS components such as lobular inflammation (r=0.387) and ballooning (r=0.231). Fragmented CK-18 was also correlated with aspartate aminotransferase (r=0.609), alanine aminotransferase (r=0.588), serum ferritin (r=0.432), and the fibrosis stage (r=0.314). A fragmented CK-18 cutoff level of 235.5 U/L yielded sensitivity, specificity, and positive and negative predictive values of 69.0%, 64.9%, 75.5% (95% CI 62.4-85.1), and 57.1% (95% CI 42.2-70.9), respectively, for the diagnosis of NASH.ConclusionsSerum fragmented CK-18 levels can be used to distinguish between NASH and NAFL. Further evaluation is required to determine whether the combined measurement of serum CK-18 and ferritin levels improves the diagnostic performance of this distinction

    Hypomorphic Mutations in TONSL Cause SPONASTRIME Dysplasia

    Get PDF
    SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based as-says and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.Peer reviewe

    Response to Wiart, C. Lee et al., Inhibitory Effect and Mechanism of Antiproliferation of Isoatriplicolide Tiglate (PCAC) from Paulownia coreana. Molecules 2012, 17, 5945-5951: A Note Regarding Paulownia coreana. Molecules 2013, 18, 2587-2588.

    No full text
    In a Comment recently published in Molecules [1], Prof. C. Wiart took issue with our identification of the plant species used in our work as Paulownia coreana. Although this name was assigned by H. Uyeki in 1925 [2], appears as such in handbooks of Korean flora [3], and examples of its use can be found in the recent literature [4–9], after reviewing the arguments and references presented in [1], we now recognize that this is no longer considered an accepted species name, and therefore we wish to revise our assignment to Pauwlonia tormentosa (Thunb.) Steud. We thank Prof. Wiart for bringing this fact to our attention and apologize to the readership of Molecules for any confusion caused by our previous classification of the species. [...

    Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction

    No full text
    Endothelial cells that line the inner walls of blood vessels are in direct contact with blood and display remarkable heterogeneity in their response to exogenous stimuli. These ECs have unique location-dependent properties determined by the corresponding vascular beds and play an important role in regulating the homeostasis of the vascular system. Evidence suggests that vascular endothelial cells exposed to various environments undergo dynamic phenotypic switching, a key biological program in the context of endothelial heterogeneity, but that might result in EC dysfunction and, in turn, cause a variety of human diseases. Emerging studies show the importance of endothelial to mesenchymal transition (EndMT) in endothelial dysfunction during inflammation. EndMT is a complex biological process in which ECs lose their endothelial characteristics, acquire mesenchymal phenotypes, and express mesenchymal cell markers, such as alpha smooth muscle actin and fibroblast-specific protein 1. EndMT is induced by inflammatory responses, leading to pathological states, including tissue fibrosis, pulmonary arterial hypertension, and atherosclerosis, via dysfunction of the vascular system. Although the mechanisms associated with inflammation-induced EndMT have been identified, unraveling the specific role of this phenotypic switching in vascular dysfunction remains a challenge. Here, we review the current understanding on the interactions between inflammatory processes, EndMT, and endothelial dysfunction, with a focus on the mechanisms that regulate essential signaling pathways. Identification of such mechanisms will guide future research and could provide novel therapeutic targets for the treatment of vascular diseases

    Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies

    No full text
    Cancer immunotherapy has fundamentally altered cancer treatment; however, its efficacy is limited to a subset of patients in most clinical settings. The immune system plays a key role in cancer progression from tumor initiation to the metastatic state. Throughout the treatment course, communications between the immune cells in the tumor microenvironment and the immune macroenvironment, as well as interactions between the immune system and cancer cells, are dynamic and constantly evolving. To improve the clinical benefit for patients who do not respond completely to immunotherapy, the molecular mechanisms of resistance to immunotherapy must be elucidated in order to develop effective strategies to overcome resistance. In an attempt to improve and update the current understanding of the molecular mechanisms that hinder immunotherapy, we discuss the molecular mechanisms of cancer resistance to immunotherapy and the available treatment strategies

    Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles

    No full text
    Bacterial biofilm causes severe antibiotic resistance. An extracellular polymeric substance (EPS) is the main component in the bacterial biofilm. Alginate is a key EPS component in the biofilm of Pseudomonas aeruginosa and responsible for surface adhesion and stabilization of biofilm. Alginate lyase has emerged as an efficient therapeutic strategy targeting to degrade the alginate in the biofilm of P. aeruginosa. However, the application of this enzyme is limited by its poor stability. In this study, chitosan nanoparticles (CS-NPs) were synthesized using low molecular weight chitosan and alginate lyase Aly08 was immobilized on low molecular weight chitosan nanoparticles (AL-LMW-CS-NPs). As a result, the immobilization significantly enhanced the thermal stability and reusability of Aly08. In addition, compared with free Aly08, the immobilized AL-LMW-CS-NPs exhibited higher efficiency in inhibiting biofilm formation and interrupting the established mature biofilm of P. aeruginosa, which could reduce its biomass and thickness confirmed by confocal microscopy. Moreover, the biofilm disruption greatly increased the antibiotic sensitivity of P. aeruginosa. This research will contribute to the further development of alginate lyase as an anti-biofilm agent

    Prognostic and Clinicopathological Significance of SERTAD1 in Various Types of Cancer Risk: A Systematic Review and Retrospective Analysis

    No full text
    SERTAD/TRIP-Br genes are considered as a key nuclear transcriptional player in diverse mechanisms of cell including carcinogenesis. The Oncomine&trade;-Online Platform was used for differential expression and biological insights. Kaplan-Meier survival estimated by KM-plotter/cBioPortal/PrognoScan with 95% CI. SERTAD1 was found significantly elevated levels in most of tumor samples. Kaplan-Meier Plotter results distinctly showed the SERTAD1 over-expression significantly reduced median overall-survival (OS) of patients in liver (n = 364/Logrank-test p = 0.0015), ovarian (n = 655/Logrank-test p = 0.00011) and gastric (n = 631/Logrank-test p = 0.1866). Increased level of SERTAD1 has a significantly higher survival rate in the initial time period, but after 100 months slightly reduced OS (n = 26/Logrank-test p = 0.34) and RFS in HER2 positive breast cancer patients. In meta-analysis, cancer patients with higher SERTAD1 mRNA fold resulted worse overall survival than those with lower SERTAD1 levels. Heterogeneity was observed in the fixed effect model analysis DFS [Tau2 = 0.0.073, Q (df = 4) = 15.536 (p = 0.004), I2 = 74.253], DSS [Tau2 = 1.015, Q (df = 2) = 33.214, (p = 0.000), I2 = 93.973], RFS [Tau2 = 0.492, Q (df = 7) = 71.133 (p = 0.000), I2 = 90.159] (Figure 5). OS [Tau2 = 0.480, Q (df = 17) = 222.344 (p = 0.000), I2 = 92.354]. Lastly, SERTAD1 involved in several signaling cascades through interaction and correlation with many candidate factors as well as miRNAs. This meta-analysis demonstrates a robust evidence of an association between higher or lower SERTAD1, alteration and without alteration of SERTAD1 in cancers in terms of survival and cancer invasiveness
    corecore