207 research outputs found

    Curvature of the Universe and Observed Gravitational Lens Image Separations Versus Redshift

    Get PDF
    In a flat, k=0 cosmology with galaxies that approximate singular isothermal spheres, gravitational lens image separations should be uncorrelated with source redshift. But in an open k=-1 cosmology such gravitational lens image separations become smaller with increasing source redshift. The observed separations do become smaller with increasing source redshift but the effect is even stronger than that expected in an Omega=0 cosmology. The observations are thus not compatible with the "standard" gravitational lensing statistics model in a flat universe. We try various open and flat cosmologies, galaxy mass profiles, galaxy merging and evolution models, and lensing aided by clusters to explain the correlation. We find the data is not compatible with any of these possibilities within the 95% confidence limit, leaving us with a puzzle. If we regard the observed result as a statistical fluke, it is worth noting that we are about twice as likely to observe it in an open universe (with 0<Omega<0.4) as we are to observe it in a flat one. Finally, the existence of an observed multiple image lens system with a source at z=4.5 places a lower limit on the deceleration parameter: q_0 > -2.0.Comment: 21 pages, 4 figures, AASTeX

    Elevated r-process enrichment in Gaia Sausage and Sequoia

    Get PDF
    The Gaia Sausage and the Sequoia represent the major accretion events that formed the stellar halo of the Milky Way. A detailed chemical study of these main building blocks provides a pristine view of the early steps of the Galaxy's assembly. We present the results of the analysis of the UVES high-resolution spectroscopic observations at the 8.2m VLT of 9 Sausage/Sequoia members selected kinematically using Gaia DR2. We season this set of measurements with archival data from Nissen &amp; Schuster (2011) and GALAH DR3 (2020). Here, we focus on the neutron-capture process by analysing Sr, Y, Ba and Eu behavior. We detect clear enhancement in Eu abundance ([Eu/Fe]~0.6-0.7) indicative of large prevalence of r-process in the stellar n-capture makeup. We are also able to trace the evolution of the heavy element production across a wide range of metallicity. Barium to europium ratio changes from a tight, flat sequence with [Ba/Eu]=-0.7 reflecting dominant core-collapse SNe contribution, to a clear upturn at higher iron abundances, betraying the onset of contamination from asymptotic giant branch (AGB) ejecta. Additionally, we discover two clear sequences in [Fe/H]-[Ba/Fe] plane likely caused by distinct levels of s-process pollution and mixing within the GS progenitor

    Thermal Properties of Two-Dimensional Advection Dominated Accretion Flow

    Get PDF
    We study the thermal structure of the widely adopted two-dimensional advection dominated accretion flow (ADAF) of Narayan & Yi (1995a). The critical radius for a given mass accretion rate, outside of which the optically thin hot solutions do not exist in the equatorial plane, agrees with one-dimensional study. However, we find that, even within the critical radius, there always exists a conical region of the flow, around the pole, which cannot maintain the assumed high electron temperature, regardless of the mass accretion rate, in the absence of radiative heating. This could lead to torus-like advection inflow shape since, in general, the ions too will cool down. We also find that Compton preheating is generally important and, if the radiative efficiency, defined as the luminosity output divided by the mass accretion rate times the velocity of light squared, is above sim 4x10^-3, the polar region of the flow is preheated above the virial temperature by Compton heating and it may result in time-dependent behaviour or outflow while accretion continues in the equatorial plane. Thus, under most relevant circumstances, ADAF solutions may be expected to be accompanied by polar outflow winds. While preheating instabilities exist in ADAF, as for spherical flows, the former are to some extent protected by their characteristically higher densities and higher cooling rates, which reduce their susceptibility to Compton driven overheating.Comment: 18 pages including 4 figures. AASTEX. Submitted to Ap

    Preheated Advection Dominated Accretion Flow

    Get PDF
    All high temperature accretion solutions including ADAF are physically thick, so outgoing radiation interacts with the incoming flow, sharing as much or more resemblance with classical spherical accretion flows as with disk flows. We examine this interaction for the popular ADAF case. We find that without allowance for Compton preheating, a very restricted domain of ADAF solution is permitted and with Compton preheating included a new high temperature PADAF branch appears in the solution space. In the absence of preheating, high temperature flows do not exist when the mass accretion rate mdot == Mdot c^2 / L_E >~ 10^-1.5. Below this mass accretion rate, a roughly conical region around the hole cannot sustain high temperature ions and electrons for all flows having mdot >~ 10^-4, which may lead to a funnel possibly filled with a tenuous hot outgoing wind. If the flow starts at large radii with the usual equilibrium temperature ~10^4 K, the critical mass accretion rate is much lower, mdot \~10^-3.7 above which level no self-consistent ADAF (without preheating) can exist. However, above this critical mass accretion rate, the flow can be self-consistently maintained at high temperature if Compton preheating is considered. These solutions constitute a new branch of solutions as in spherical accretion flows. High temperature PADAF flows can exist above the critical mass accretion rate in addition to the usual cold thin disk solutions. We also find solutions where the flow near the equatorial plane accretes normally while the flow near the pole is overheated by Compton preheating, possibly becoming, a polar wind, solutions which we designate WADAF.Comment: 41 pages with 10 postscript figures (aastex5). Submitted to Ap

    The S2 Stream:the shreds of a primitive dwarf galaxy

    Get PDF
    We present a multi-instrument chemical analysis of the stars in the metal-poor S2 halo stream using both high- and low-resolution spectroscopy, complemented with a re-analysis of the archival data to give a total sample of 62 S2 members. Our high-resolution program provides alpha-elements (C, Mg, Si, Ca and Ti), iron-peak elements (V, Cr, Mn, Fe, Ni), n-process elements (Sr, Ba) and other elements such us Li, Na, Al, and Sc for a subsample of S2 objects. We report coherent abundance patterns over a large metallicity spread (~1dex) confirming that the S2 stream was produced by a disrupted dwarf galaxy. The S2's alpha-elements display a mildly decreasing trend with increasing metallicity which can be interpreted as a "knee" at [Fe/H]<-2. However, even at the high end of [Fe/H], S2's [alpha/Fe] ratios do not climb down from the halo plateau, signaling prehistoric enrichment pattern with minimal SN Ia contribution. At the low metallicity end, the n-capture elements in S2 are dominated by r-process production: several stars are Ba-enhanced but unusually extremely poor in Sr. Moreover, some of the low-[Fe/H] stars appear to be carbon-enhanced. We interpret the observed abundance patterns with the help of chemical evolution models that demonstrate the need for modest star-formation efficiency and low wind efficiency confirming that the progenitor of S2 was a primitive dwarf galaxy.Comment: Submitted to MNRAS. Comments are welcome

    Hot Accretion onto Black Holes with Outflow

    Get PDF
    Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow

    Proper Motions of Stellar Streams Discovered in the Dark Energy Survey

    Get PDF
    We cross-match high-precision astrometric data from Gaia DR2 with accurate multi-band photometry from the Dark Energy Survey (DES) DR1 to confidently measure proper motions for nine stellar streams in the DES footprint: Aliqa Uma, ATLAS, Chenab, Elqui, Indus, Jhelum, Phoenix, Tucana III, and Turranburra. We determine low-confidence proper motion measurements for four additional stellar streams: Ravi, Wambelong, Willka Yaku, and Turbio. We find evidence for a misalignment between stream tracks and the systemic proper motion of streams that may suggest a systematic gravitational in uence from the Large Magellanic Cloud. These proper motions, when combined with radial velocity measurements, will allow for detailed orbit modeling which can be used to constrain properties of the LMC and its on nearby streams, as well as global properties of the Milky Way's gravitational potential

    Complementary and alternative medicine for patients with chronic fatigue syndrome: A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Throughout the world, patients with chronic diseases/illnesses use complementary and alternative medicines (CAM). The use of CAM is also substantial among patients with diseases/illnesses of unknown aetiology. Chronic fatigue syndrome (CFS), also termed myalgic encephalomyelitis (ME), is no exception. Hence, a systematic review of randomised controlled trials of CAM treatments in patients with CFS/ME was undertaken to summarise the existing evidence from RCTs of CAM treatments in this patient population.</p> <p>Methods</p> <p>Seventeen data sources were searched up to 13th August 2011. All randomised controlled trials (RCTs) of any type of CAM therapy used for treating CFS were included, with the exception of acupuncture and complex herbal medicines; studies were included regardless of blinding. Controlled clinical trials, uncontrolled observational studies, and case studies were excluded.</p> <p>Results</p> <p>A total of 26 RCTs, which included 3,273 participants, met our inclusion criteria. The CAM therapy from the RCTs included the following: mind-body medicine, distant healing, massage, tuina and tai chi, homeopathy, ginseng, and dietary supplementation. Studies of qigong, massage and tuina were demonstrated to have positive effects, whereas distant healing failed to do so. Compared with placebo, homeopathy also had insufficient evidence of symptom improvement in CFS. Seventeen studies tested supplements for CFS. Most of the supplements failed to show beneficial effects for CFS, with the exception of NADH and magnesium.</p> <p>Conclusions</p> <p>The results of our systematic review provide limited evidence for the effectiveness of CAM therapy in relieving symptoms of CFS. However, we are not able to draw firm conclusions concerning CAM therapy for CFS due to the limited number of RCTs for each therapy, the small sample size of each study and the high risk of bias in these trials. Further rigorous RCTs that focus on promising CAM therapies are warranted.</p
    • 

    corecore