47 research outputs found
Metabolic control level and glucose variability in adolescents with type 1 diabetes during low and high-intensity exercise
OBJECTIVE
The main purpose of this study was to characterize the determinants of metabolic changes in young type 1 diabetes (T1DM) and to determine glycemic variability during low and high-intensity exercise.
PATIENTS AND METHODS
20 young male T1DM patients were divided into two subgroups characterized by levels of glycated hemoglobin (HbA1c): HbA1c7.3% (worse HbA1c subgroup, n=10). All participants performed a maximal oxygen uptake test and two efforts of various intensities (45 minutes of aerobic exercise and 30 minutes of mixed aerobic-anaerobic intensity exercise). Continuous glucose monitors (CGM) were used to control the glucose concentration.
RESULTS
Changes in biomarkers describing the metabolic response were similar in both groups. A comparison of applied efforts exhibited that maximal capacity effort resulted in the highest values of blood glucose (BG) at the end (150.9-160.6 mg/dl) and 1 hour after the exercise (140.2-161.3 mg/dl). BG concentration before, during, 1 hour, and 24 hours after each exercise was insignificantly higher in the worse Hb1Ac group.
CONCLUSIONS
HbA1c levels are insufficient to confirm whether the applied effort is performed in acceptable glycemic values. The CGM monitors allow for precise control of BG variations and accurate planning of physical activity by adjusting the insulin and carbohydrate consumption dose
Getting them through the door: Social and behavioral determinants of uptake and engagement in an obesity intervention
Using data from a large-scale screening program (N = 19634), we aimed to prospectively identify factors predicting uptake (i.e. acceptance of the invitation) and engagement (i.e. participation in at least two sessions) in a multi-component-intensive-behavioral-intervention for obesity-management (MBIOM) intervention targeting adolescents (n = 2862; 12–14 years; BMI ≥90th percentile). Approximately one third of adolescents most in need of weight management declined the initial invitation to enter the MBIOM. Poor diet, sedentary behavior, and parental education predicted willingness to enter and stay in the intervention, however measured body mass index did not matter. Perceived family support, instead of initial motivation, facilitated engagement. Our results provide new insights on the importance of regional socio-geographical factors including trust in local authorities
Association between vascular endothelial growth factor and hypertension in children and adolescents type I diabetes mellitus
The aim of the study was to analyse the relationship between the serum level of vascular endothelial growth factor (VEGF) and the incidence of hypertension (HT) in children and adolescents with type I diabetes mellitus (T1DM). One hundred and five patients with T1DM were enrolled in the study. The control group consisted of 30 healthy controls. All the T1DM patients were subjected to biochemical analyses, ophthalmologic examination and 24-h blood pressure monitoring. Besides, all the patients and healthy controls had serum VEGF levels measured with the use of the ELISA methodology. The essence of our research is that patients with T1DM and HT and with microalbuminuria (MA) and diabetic retinopathy (DR) (MA/DR) are characterized by a significantly higher level of VEGF (340.23±93.22 pg ml–1) in blood serum in comparison with the group of T1DM patients without HT and MA/DR (183.6±96.6 pg ml–1) and with healthy controls (145.32±75.58 pg ml–1). In addition, the VEGF level was significantly higher in T1DM patients, who presented all three complications, that is HT, retinopathy and MA in comparison with T1DM patients without HT, but with MA/DR (P=0.036). On the other hand, no statistically significant differences (P=0.19) were noted in the level of VEGF in serum between T1DM patients without HT and MA/DR and the healthy control group. At a further stage of analysis, using the method of multiple regression, it was shown that systolic pressure, HbA1c and duration of disease are independent factors influencing the concentration of VEGF. Summarizing, the measurement of VEGF serum levels allows for the identification of groups of patients who have the highest risk of HT and, subsequently, progression of vascular complications
Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study
Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron
Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study
Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life