12 research outputs found

    Current conservation status of the Blue Swallow Hirundo atrocaerulea Sundevall 1850 in Africa

    Get PDF
    The global Blue Swallow Hirundo atrocaerulea was classified as Vulnerable in 2010 on account of its small and rapidly declining population estimated at less than 1 500 pairs. We undertook this study to gain a better understanding of the current status and threats facing this migratory species. Three previously unknown areas that might be part of the species’ non-breeding range were identified in Kenya and northern Tanzania. Within its breeding range we identified three previously unknown areas of potentially suitable habitat, one in Tanzania and two in Malawi, which require further exploration. Population viability assessment predicted that the Blue Swallow population will decline by 8% in 10 years. The overall probability of extinction of the species in the wild is 3%. Minimum viable population size analysis suggests that a goal for the long-term conservation of the Blue Swallow should be to mitigate current threats that are driving declines such that the population increases to a minimum of 3 600 individuals. This should consist of at least 900 individuals in each of the four clusters identified, along with a minimum of 500 individuals in at least one of the meta-populations per cluster. The four clusters are located in (1) the southeasten Democratic Republic of the Congo, (2) highlands of southern Tanzania and northern Malawi, (3) eastern highlands of Zimbabwe and (4) South Africa and Swaziland. The current proportions of the Blue Swallow population in strictly protected and unprotected areas on their breeding grounds are 53% and 47%, respectively, whereas on their non-breeding grounds the corresponding percentages are 25% and 75%, respectively. Our reassessment of the Blue Swallow’s risk of extinction indicates that it continues to qualify as Vulnerable according to the IUCN/SSC criteria C2a(i).http://www.tandfonline.com/loi/tost202016-09-30hb2016Zoology and Entomolog

    Isolation and characterization of distinct Rotavirus A in bat and rodent hosts

    Get PDF
    Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission

    Molecular characterization and phylogenetic analysis of Trypanosoma spp. detected from striped leaf-nosed bats (Hipposideros vittatus) in Zambia

    No full text
    Bat trypanosomes consist of more than 30 trypanosome species from over 70 species of bats. Recent studies suggest that bats play a role in disseminating trypanosomes from African continent to the terrestrial mammals both in the Afrotropic-Palearctic Ecozones and Nearctic Ecozone. However, the diversity, distribution, and evolution of bat trypanosomes are still unclear. To better understand their evolution, more genetic data of bat trypanosomes from a variety of locations are required. During a survey of Borrelia spp. of bats inhabiting a cave in Zambia, we observed flagellate parasites from 5 of 43 hemocultures. Sequence and phylogenetic analyses of the glycosomal glyceraldehyde 3-phosphate dehydrogenase gene (gGAPDH; 572 bp) and the 18S ribosomal RNA gene (18S rRNA gene; 1,079-1,091 bp) revealed that all were Trypanosoma spp. belonged to the Trypanosoma cruzi Glade. Three and two of them exhibited the similarity with T. conorhini and T. dionisii, respectively. The present study provides the first genetic data on Trypanosoma spp. of bats inhabiting Zambia

    Marburgvirus in Egyptian Fruit Bats, Zambia

    No full text
    We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease

    Current conservation status of the Blue Swallow <i>Hirundo atrocaerulea</i> Sundevall 1850 in Africa

    Get PDF
    <div><p><b>The global Blue Swallow <i>Hirundo atrocaerulea</i> was classified as Vulnerable in 2010 on account of its small and rapidly declining population estimated at less than 1 500 pairs. We undertook this study to gain a better understanding of the current status and threats facing this migratory species. Three previously unknown areas that might be part of the species' non-breeding range were identified in Kenya and northern Tanzania. Within its breeding range we identified three previously unknown areas of potentially suitable habitat, one in Tanzania and two in Malawi, which require further exploration. Population viability assessment predicted that the Blue Swallow population will decline by 8% in 10 years. The overall probability of extinction of the species in the wild is 3%. Minimum viable population size analysis suggests that a goal for the long-term conservation of the Blue Swallow should be to mitigate current threats that are driving declines such that the population increases to a minimum of 3 600 individuals. This should consist of at least 900 individuals in each of the four clusters identified, along with a minimum of 500 individuals in at least one of the meta-populations per cluster. The four clusters are located in (1) the southeasten Democratic Republic of the Congo, (2) highlands of southern Tanzania and northern Malawi, (3) eastern highlands of Zimbabwe and (4) South Africa and Swaziland. The current proportions of the Blue Swallow population in strictly protected and unprotected areas on their breeding grounds are 53% and 47%, respectively, whereas on their non-breeding grounds the corresponding percentages are 25% and 75%, respectively. Our reassessment of the Blue Swallow's risk of extinction indicates that it continues to qualify as Vulnerable according to the IUCN/SSC criteria C2a(i).</b></p></div
    corecore