19 research outputs found

    Evaluating the effectiveness of IPTi on malaria using routine health information from sentinel health centres in southern Tanzania

    Get PDF
    BACKGROUND\ud \ud Intermittent preventive treatment of malaria in infants (IPTi) consists of the administration of a treatment dose of sulphadoxine-pyrimethamine (SP) at the time of routine vaccinations. The use of routine Health Management and Information Services (HMIS) data to investigate the effect of IPTi on malaria, anaemia, and all-cause attendance in children aged 2-11 months presenting to 11 health centres in southern Tanzania is described.\ud \ud METHODS\ud \ud Clinical diagnosis of malaria was confirmed with a positive blood slide reading from a quality assurance laboratory. Anaemia was defined using two thresholds (mild [Hb<11 g/dL], severe [Hb<8 g/dL]). Incidence rates between IPTi and non-implementing health centres were calculated using Poisson regression, and all statistical testing was based on the t test due to the clustered nature of the data.\ud \ud RESULTS\ud \ud Seventy two per cent of infants presenting in intervention areas received at least one dose of IPTi--22% received all three. During March 2006-April 2007, the incidence of all cause attendance was two attendances per person, per year (pppy), including 0.2 episodes pppy of malaria, 0.7 episodes of mild and 0.13 episodes of severe anaemia. Point estimates for the effect of IPTi on malaria varied between 18% and 52%, depending on the scope of the analysis, although adjustment for clustering rendered these not statistically significant.\ud \ud CONCLUSIONS\ud \ud The point estimate of the effect of IPTi on malaria is consistent with that from a large pooled analysis of randomized control trials. As such, it is plausible that the difference seen in health centre data is due to IPTi, even thought the effect did not reach statistical significance. Findings draw attention to the challenges of robust inference of effects of interventions based on routine health centre data. Analysis of routine health information can reassure that interventions are being made available and having desired effects, but unanticipated effects should trigger data collection from representative samples of the target population

    Whole blood transcriptome changes following controlled human malaria infection in malaria pre-exposed volunteers correlate with parasite prepatent period

    Get PDF
    Malaria continues to be one of mankind's most devastating diseases despite the many and varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is the development of effective vaccines. Controlled human malaria infection (CHMI) is an invaluable tool for vaccine efficacy assessment and investigation of early immunological and molecular responses against Plasmodium falciparum infection. Here, we investigated gene expression changes following CHMI using RNA-Seq. Peripheral blood samples were collected in Bagamoyo, Tanzania, from ten adults who were injected intradermally (ID) with 2.5x104 aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria® PfSPZ Challenge). A total of 2,758 genes were identified as differentially expressed following CHMI. Transcriptional changes were most pronounced on day 5 after inoculation, during the clinically silent liver phase. A secondary analysis, grouping the volunteers according to their prepatent period duration, identified 265 genes whose expression levels were linked to time of blood stage parasitemia detection. Gene modules associated with these 265 genes were linked to regulation of transcription, cell cycle, phosphatidylinositol signaling and erythrocyte development. Our study showed that in malaria pre-exposed volunteers, parasite prepatent period in each individual is linked to magnitude and timing of early gene expression changes after ID CHMI

    Comparison of Bioavailability Between the Most Available Generic Tablet Formulation Containing Artemether and Lumefantrine on the Tanzanian Market and the Innovator's Product.

    Get PDF
    Existence of anti-malarial generic drugs with low bioavailability marketed on sub-Saharan Africa has raised a concern on patients achieving therapeutic concentrations after intake of these products. This work compared bioavailability of one generic tablet formulation with innovator's product. Both were fixed dose combination tablet formulations containing artemether and lumefantrine.MethodologyThe study was conducted in Dar Es Salaam, Tanzania, in which a survey of the most abundant generic containing artemether-lumefantrine tablet formulation was carried out in retail pharmacies. The most widely available generic (Artefan(R), Ajanta Pharma Ltd, Maharashtra, India) was sampled for bioavailability comparison with Coartem(R) (Novartis Pharma, Basel, Switzerland) - the innovator's product. A randomized, two-treatment cross-over study was conducted in 18 healthy Tanzanian black male volunteers. Each volunteer received Artefan(R) (test) and Coartem(R) (as reference) formulation separated by 42 days of drug-free washout period. Serial blood samples were collected up to 168 hours after oral administration of a single dose of each treatment. Quantitation of lumefantrine plasma levels was done using HPLC with UV detection. Bioequivalence of the two products was assessed in accordance with the US Food and Drug Authority (FDA) guidelines. The most widely available generic in pharmacies was Artefan(R) from India. All eighteen enrolled volunteers completed the study and both test and reference tablet formulations were well tolerated. It was possible to quantify lumefantrine alone, therefore, the pharmacokinetic parameters reported herein are for lumefantrine. The geometric mean ratios for Cmax, AUC0-t and AUC0-[infinity] were 84% in all cases and within FDA recommended bioequivalence limits of 80% -- 125%, but the 90% confidence intervals were outside FDA recommended limits (CI 49--143%, 53 - 137%, 52 - 135% respectively). There were no statistical significant differences between the two formulations with regard to PK parameters (P > 0.05). Although the ratios of AUCs and Cmax were within the acceptable FDA range, bioequivalence between Artefan(R) and Coartem(R) tablet formulations was not demonstrated due to failure to comply with the FDA 90 % confidence interval criteria. Based on the observed total drug exposure (AUCs), Artefan(R) is likely to produce a similar therapeutic response as Coartem(R)

    Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial

    Get PDF
    Background Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. Methods We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5–36 months) were enrolled and randomly assigned (2:1) to receive 5 μg R21 plus 50 μg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. Findings From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71–79; p<0·0001) at the seasonal sites and 68% (61–74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71–78; p<0·0001) at the seasonal sites and 67% (59–73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762–974) cases per 1000 children-years at seasonal sites and 296 (231–362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5–17 month age group compared with 18–36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73–84]; p<0·001) and standard (75% [65–83]; p<0·001) sites. Interpretation R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. Funding The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy

    Advancing global health through development and clinical trials partnerships: a randomized, placebo-controlled, double-blind assessment of safety, tolerability, and Immunogenicity of Plasmodium falciparum sporozoites vaccine for malaria in healthy Equatoguinean men

    Get PDF
    Equatorial Guinea (EG) has implemented a successful malaria control program on Bioko Island. A highly effective vaccine would be an ideal complement to this effort and could lead to halting transmission and eliminating malaria. Sanaria® PfSPZ Vaccine (Plasmodium falciparum sporozoite Vaccine) is being developed for this purpose. To begin the process of establishing the efficacy of and implementing a PfSPZ Vaccine mass vaccination program in EG, we decided to conduct a series of clinical trials of PfSPZ Vaccine on Bioko Island. Because no clinical trial had ever been conducted in EG, we first successfully established the ethical, regulatory, quality, and clinical foundation for conducting trials. We now report the safety, tolerability, and immunogenicity results of the first clinical trial in the history of the country. Thirty adult males were randomized in the ratio 2:1 to receive three doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine (N = 20) or normal saline placebo (N = 10) by direct venous inoculation at 8-week intervals. The vaccine was safe and well tolerated. Seventy percent, 65%, and 45% of vaccinees developed antibodies to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) by enzyme-linked immunosorbent assay, PfSPZ by automated immunofluorescence assay, and PfSPZ by inhibition of sporozoite invasion assay, respectively. Antibody responses were significantly lower than responses in U.S. adults who received the same dosage regimen, but not significantly different than responses in young adult Malians. Based on these results, a clinical trial enrolling 135 subjects aged 6 months to 65 years has been initiated in EG; it includes PfSPZ Vaccine and first assessment in Africa of PfSPZ-CVac. ClinicalTrials.gov identifier: NCT02418962

    Safety of sulfadoxine/pyrimethamine for intermittent preventive treatment of malaria in infants: evidence from large-scale operational research in southern Tanzania.

    Get PDF
    Intermittent preventive treatment with sulfadoxine/pyrimethamine (SP) is recommended for malaria prevention in infants (IPTi-SP). Serious adverse events, including Stevens-Johnson syndrome (SJS), have been reported following exposure to SP, but few infant-specific data exist. The safety of IPTi-SP was evaluated as part of a pilot implementation programme in southern Tanzania using three methods: spontaneous adverse event reporting to capture suspected adverse drug reactions (ADR); a census survey documenting rash-related hospital admissions among children < 2 years of age; and verbal autopsies (VA) completed for rash-related deaths in 2-11-month-olds. Approximately 82 000 IPTi-SP doses were administered to approximately 29 000 children. In total, 119 suspected ADRs were reported, 13 in children aged <2 years, only one of whom had received IPTi-SP. The census involved 243 612 households. Only one rash-related admission was reported amongst 1292 children aged 2-11 months, but this child had no history of exposure to SP. Moreover, 30 of 699 deaths in 2-11-month-olds were said to have been associated with a skin rash. The rates of rash-associated death were 0.59/1000 person-years at risk (PYAR) and 1.17/1000 PYAR in intervention and comparison areas, respectively (P = 0.79). VAs did not suggest SJS or any other ADR. We conclude that IPTi-SP is associated with a very low incidence of severe skin reactions. [ClinicalTrials.gov identifier: NCT00152204]
    corecore